欢迎来到天天文库
浏览记录
ID:48592880
大小:13.50 KB
页数:4页
时间:2020-02-26
《中小学数学教学中的内容衔接.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、重视中小学数学内容的衔接:1.数与代数领域的衔接“数与代数”是中小学数学的基本内容.在小学,主要指数与数的运算(这里的数主要指非负有理数,即所谓“算术数”).在中学,除了数概念扩充到了实数外,更重要的是有了式的运算.从小学学习用字母表示数开始,到中学进一步研究数字与字母的运算,即研究代数式.在此基础上研究代数式的运算及关系(相等与不等),由此而成的方程、不等式、函数等,就构成了初中数学中数与代数的基本部分.于是,从小学到中学,数与代数领域的主要变化就是从数字的具体运算到代数式的形式化运算的转变.为了顺利完成这一转变,在初中
2、低年级阶段,要积累一些“半形式化运算”的经验.此外,在数与代数领域,中小学数学的另一个重要衔接点是列简易方程.简易方程是中小学都有的内容,但在小学,由于学生受算术思维的影响,所列出的方程往往不能体现方程的核心思想。若从做好中小学衔接的角度来看,我们还得引导学生理解:列方程过程中,重要的是未知数要参与运算.列出像1200+100=x这样的方程,说明学生思维方式实质上还是算术的,而不是代数的.而引导学生思维方式从算术思维逐步向代数思维转变,无疑是中小学数学教育衔接的重要内容.思维方式的转变是依赖于载体的,这类看图列方程就是培养学生
3、代数思维方式的重要载体,应该引起数学教师的重视.面对小学数学中所提到的方程的解法,绝大部分依赖于学生对四则运算的理解和熟练程度。逆运算在简易方程的解法上占主导地位,起着决定性的作用。但这种解法并不是方程思想的主旨。所以我们在进行相关内容的教学时,要有充分的思想准备,在学生仍然用算术方法考虑列方程时,给学生留有足够的空间,通过多角度、多维度的思考,让学生自己发掘代数思想的优势。2.空间与图形领域的衔接在小学阶段,空间与图形领域主要包括图形的认识、测量、图形与变换、图形与位置的初步知识,认识的主要手段是通过直观感知.初中在此基础上
4、,增加了图形与坐标、图形与证明等内容.认识方式也从直观感知到“说一点理”“说理”,即由直观感知逐步过渡到逻辑论证.要顺利实现这个领域的衔接,重要的一点就是要让学生逐步理解说理是必要的,逐步学会怎么说理.首先,在数学教学中,我们应该逐步让学生养成言之有据的习惯.比如,“因为这两个三角形等底等高,所以它们的面积相等”,“因为这个三角形是直角三角形,所以它的两个锐角这和是90度”,等等.在说理时,可以不那么严密,但一定要注意基本的科学性,其次,我们应该努力让学生体会推理论证的必要性.如三角形的内角和定理,在小学,学生已经通过量一量、
5、剪一剪、拼一拼等操作活动,知道了三角形的内角和是180度.在初中教学这一部分内容时,主要要渲染这样的事实:一个三角形,无论形状如何,无论大小怎样,它的内角和无一例外都是180度,这是为什么呢?并向学生提出如下问题:在小学时,我们量了一些三角形的内角,发现内角和都是180度,但我们不可能把所有的三角形拿来一一检验,有什么办法让我们能确认所有的三角形(包括我们没有去检验的三角形)的内角和都是180度呢?通过对这两个问题的思考,体会论证的必要性.第三,初中几何教学要关注学生已有的知识基础.事实上,有很多初中数学中“空间与图形”的内容
6、,在小学都有初步渗透.如“等腰三角形两底角相等”,在小学,学生通过操作,已经了解了这个结论.于是,在初中教学这一内容时,就应该从这一起点开始,不必花过多的时间与精力再组织学生进行测量、猜测等.3.统计与概率领域的衔接大家认为,统计与概率领域存在的衔接问题很多.特别是概率领域,因为是新生事物,教材本身在衔接问题上的处理就没有其他内容成熟.我们认为,搞好这一领域的衔接问题主要要注意以下几点.首先,注意各个阶段的教学目标,初中的起点不能太低,避免与小学重复.事实上,由于统计与概率领域内容有限,分散在各个学段、年级按“螺旋式上升”编写
7、的,再加上缺少成熟的编写方案,年级与年级之间相关内容的难度,教学要求之间的差异本来就比较小.若不仔细体会,容易出现要求不明,甚至重复的情况.其次,在教学一些统计量,如平均数、中位数、众数时,要注意科学性.即一方面,要揭示用这些统计量来表征一组数据的合理性和优势;另一方面,也要揭示其局限性.小学生可能体会这些统计量的优势作用更多一些,到了初中,由于学生的批判性思维逐步发展,应该更多的引导他们考虑这些统计量的局限性.
此文档下载收益归作者所有