2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx

2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx

ID:48543643

大小:164.71 KB

页数:7页

时间:2020-02-25

2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx_第1页
2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx_第2页
2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx_第3页
2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx_第4页
2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx_第5页
资源描述:

《2019_2020学年高中数学第10章概率10.1随机事件与概率课时作业45事件的关系和运算新人教A版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时作业45 事件的关系和运算知识点一事件的运算1.掷一个质地均匀的正方体骰子,事件E={向上的点数为1},事件F={向上的点数为5},事件G={向上的点数为1或5},则有(  )A.E⊆FB.G⊆FC.E∪F=GD.E∩F=G答案 C解析 根据事件之间的关系,知E⊆G,F⊆G,事件E,F之间不具有包含关系,故排除A,B;因为事件E与事件F不会同时发生,所以E∩F=∅,故排除D;事件G发生当且仅当事件E发生或事件F发生,所以E∪F=G.故选C.2.盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球,2个白球},事件B={3个球中有2个红球,1个白球},事件C

2、={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.(1)事件D与A,B是什么样的运算关系?(2)事件C与A的交事件是什么?解 (1)对于事件D,可能的结果为“1个红球,2个白球,或2个红球,1个白球”,故D=A∪B.(2)对于事件C,可能的结果为“1个红球,2个白球,或2个红球,1个白球,或3个均为红球”,故C∩A=A.知识点二事件关系的判断3.从1,2,3,4,5,6,7,8,9这9个数字中任取两个数,分别有下列事件:①恰有一个是奇数和恰有一个是偶数;②至少有一个是奇数和两个数都是奇数;③至少有一个是奇数和两个数都是偶数;④至少有一个是奇数和至少有一个是偶数.其中

3、,为互斥事件的是(  )A.①B.②④C.③D.①③答案 C解析 “恰有一个是奇数”和“恰有一个是偶数”是相等事件,故①不是互斥事件;“至少有一个是奇数”包含“两个数都是奇数”的情况,故②不是互斥事件;“至少有一个是奇数”和“两个数都是偶数”不能同时发生,故③是互斥事件;“至少有一个是奇数”和“至少有一个是偶数”可以同时发生,故④不是互斥事件.故选C.4.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰有1名男生与2名全是男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少

4、有1名男生与至少有1名女生.解 (1)因为“恰有1名男生”与“2名全是男生”不可能同时发生,所以它们是互斥事件;当2名都是女生时它们都不发生,所以它们不是对立事件.(2)因为“2名全是男生”发生时“至少有1名男生”也同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.(4)当选出的是“1名男生和1名女生”时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.5.利用如图所示的两个转盘玩配色游戏.两个转盘各转一次,观察指针所指区域颜色(不考虑指针落在分界线上的情况).事件A

5、表示“转盘①指针所指区域是黄色”,事件B表示“转盘②指针所指区域是绿色”,事件C表示“两转盘指针所指区域颜色相同”.(1)用样本点表示A∩B,A∪B;(2)试判断事件A与B,A与C,B与C是否为互斥事件.解 列表如下:由上表可知,共有15种等可能的结果.(1)由上表可知A={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫)},B={(红,绿),(黄,绿),(蓝,绿)},A∩B={(黄,绿)},A∪B={(黄,绿),(黄,黄),(黄,红),(黄,蓝),(黄,紫),(红,绿),(蓝,绿)}.(2)C={(蓝,蓝),(黄,黄),(红,红)},因为A∩B={(黄,绿)}≠∅、A∩C

6、={(黄,黄)}≠∅、B∩C=∅,所以事件A与B,A与C不是互斥事件,B与C是互斥事件.易错点分不清“互斥事件”与“对立事件”致误6.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列结论正确的是(  )A.F与G互斥B.E与G互斥但不对立C.E,F,G中任意两个事件均互斥D.E与G对立易错分析 解答本题易出现两个错误.一是对互斥事件与对立事件的概念模糊不清,理解不透;二是对“全是、全不是、至多、至少”搞不清楚,从而导致错误.答案 D正解 由题意得事件E与事件

7、F不可能同时发生,是互斥事件;事件E与事件G不可能同时发生,是互斥事件;当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件,故A,C不正确.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以B不正确,D正确.故选D.一、选择题1.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机},事件D={至少有一弹击中飞机},下列关系不正确的是(  )A.A⊆DB.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。