7-7容斥原理_教师版_题库版.doc

7-7容斥原理_教师版_题库版.doc

ID:48508283

大小:1.73 MB

页数:13页

时间:2020-02-06

7-7容斥原理_教师版_题库版.doc_第1页
7-7容斥原理_教师版_题库版.doc_第2页
7-7容斥原理_教师版_题库版.doc_第3页
7-7容斥原理_教师版_题库版.doc_第4页
7-7容斥原理_教师版_题库版.doc_第5页
资源描述:

《7-7容斥原理_教师版_题库版.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、7-7容斥原理教学目标1.了解容斥原理二量重叠和三量重叠的内容;2.掌握容斥原理的在组合计数等各个方面的应用.知识精讲知识点说明一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:表示小圆部分,表示大圆部分,表示大圆

2、与小圆的公共部分,记为:,即阴影面积.图示如下:表示小圆部分,表示大圆部分,表示大圆与小圆的公共部分,记为:,即阴影面积.1.先包含——重叠部分计算了次,多加了次;2.再排除——把多加了次的重叠部分减去. 包含与排除原理告诉我们,要计算两个集合的并集的元素的个数,可分以下两步进行:第一步:分别计算集合的元素个数,然后加起来,即先求(意思是把的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去(意思是“排除”了重复计算的元素个数).二、三量重叠问题类、类与类元素个数的总和类元素的个数类元素个数类元素个数既

3、是类又是类的元素个数既是类又是类的元素个数既是类又是类的元素个数同时是类、类、类的元素个数.用符号表示为:.图示如下:13图中小圆表示的元素的个数,中圆表示的元素的个数,大圆表示的元素的个数.1.先包含:重叠部分、、重叠了次,多加了次.2.再排除:重叠部分重叠了次,但是在进行计算时都被减掉了.3.再包含:.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.例题精讲板块一、两量重叠问题【例1】两张长厘米,宽厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【解析】两个长方形如图摆放时出现了重叠

4、(见图中的阴影部分),重叠部分恰好是边长为厘米的正方形,如果利用两个的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积长方形面积之和-重叠部分.于是,被覆盖面积(平方厘米).【巩固】把长厘米和厘米的两根铁条焊接成一根铁条.已知焊接部分长厘米,焊接后这根铁条有多长?【解析】因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长(厘米).【巩固】把长厘米和厘米的两根铁条焊接成一根铁条.已知焊接部分长厘米,焊接后这根铁条有多长?【解析】

5、焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:(厘米).【例2】实验小学四年级二班,参加语文兴趣小组的有人,参加数学兴趣小组的有人,有人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?【解析】如图所示,圆表示参加语文兴趣小组的人,圆表示参加数学兴趣小组的人,与重合的部分(阴影部分)表示同时参加两个小组的人.图中13圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有(人);图中圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有(人).方法一:由此得到参加语文或数学兴趣小组的有:(人)

6、.方法二:根据包含排除法,直接可得:参加语文或数学兴趣小组的人参加语文兴趣小组的人参加数学兴趣小组的人两个小组都参加的人,即:(人).【巩固】芳草地小学四年级有人学钢琴,人学画画,人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【解析】解包含与排除题,画图是一种很直观、简捷的方法,可以帮助解决问题,画图时注意把不同的对象与不同的区域对应清楚.建议教师帮助学生画图分析,清楚的分析每一部分的含义.如图,圆表示学画画的人,圆表示学钢琴的人,表示既学钢琴又学画画的人,图中圆不含阴影的部分表示只学画画的人,有:(人),图中圆不含阴影的部

7、分表示只学钢琴的人,有:(人).【例1】一个班人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有人;做完数学作业的有人.这些人中语文、数学作业都完成的有多少人?【解析】不妨用下图来表示:线段表示全班人数,线段表示做完语文作业的人数,线段表示做完数学作业的人数,重叠部分则表示语文、数学都做完的人数.根据题意,做完语文作业的有人,即.做完数学作业的有人,即.(人)①(人)②①式减②式,就有(人)所以,数学、语文作业都做完的有人.【巩固】四年级科技

8、活动组共有人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有人,装配好一架飞机模型的同学有人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【解析

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。