欢迎来到天天文库
浏览记录
ID:48440370
大小:45.00 KB
页数:6页
时间:2020-01-28
《生物医用高分子微球的制备与应用.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、生物医用高分子微球的制备与应用陈瑜陈明清**刘晓亚杨成(无锡轻工大学化学与材料工程学院无锡214036) 高分子微球以其分子结构的可设计性吸引了越来越多的科学工作者的兴趣,进而更加快了其开发应用的步伐。美国等西方发达国家在这一研究领域起步较早,技术力量已相当强。日本在这一研究领域中投入大量人力和财力,获得了众多的成果与专利。近年来我国也有不少的科研人员开始从事该领域的研究,并取得了一定的成果,但总的来说与国外相比仍有差距。 高分子微球可以通过选择聚合单体和聚合方式从分子水平上来设计合成和制备,并且可以比
2、较方便地控制其尺寸的大小和均一性,使之具有所需要的特定性能与功能。这种微观结构和性能的可设计性,使得高分子微球在对材料特性要求较高的生物医学领域中显示出巨大的发展潜力。本文拟对近几年来报道的几种核-壳复合型高分子微球制备方法以及高分子微球在生物技术和医学诊治方面的应用加以综述。1生物医用高分子微球的制备方法 生物医用高分子微球通常为核-壳复合结构,其中壳层具有生物活性或对特定环境有亲合性,而核作为这类活性大分子的载体,使微球具有一定的稳定性;或者,核为具有一定生物功能性的高分子,而壳层作为保护层,维持核内物
3、质的活性。 图1大分子单体法合成微球1.1大分子单体法(MacromonomerMethod) 大分子单体具有确定的分子量和明确的结构,所以近来被广泛地用来制备高分子微球。首先将某一单体聚合成有一定聚合度的低聚物,再在低聚物上引入一具有聚合反应活性的基团(如碳碳双键等),制得具有确定分子量的大分子单体。然后在含有大分子单体的介质中加入第二单体、引发剂,进行接枝共聚反应。若大分子单体为亲水的,第二单体为疏水的,则水相中的大分子单体接枝到疏水性的第二单体上成双亲性接枝共聚物,并逐渐形成胶粒。疏水性单体可
4、扩散到胶粒内,进一步参加共聚反应。亲水性的大分子链则起到了稳定作用,防止胶粒的凝聚。于是形成了核为疏水,壳为亲水的高分子微球(如图1所示)[1-4]。反之,也可用逆相乳液聚合的方法制备疏水性高分子微球。微球的大小及其分布可以通过溶剂组成和加入的单体及大分子单体的量来控制。其大小可从几十nm到几十mm的范围内变化。由于其形态的可控性及温和的聚合条件使得此类微球被广泛地应用于生物医学领域[5-7]。1.2种子聚合法(SeededPolymerization)与动态溶胀法(DynamicSwellingMethod)
5、 首先在聚合单体中加入少量具有多官能团的单体(如对二乙烯苯等)合成交联型聚合物并作为种子,配制成单分散液。然后加入另一种单体、引发剂、交联剂,进行聚合反应。加入的单体聚合到种子乳胶粒表面,形成具有核-壳结构的微球[8,9]。种子聚合法制得的微球一般粒径较小,只有几μm。为了制得粒径较大(>5μm)的微球,可向含有种子聚合物微粒和某一单体的醇/水溶液中慢速连续地滴加水。在均匀搅拌下,处于单分散状态的种子微粒吸附了大量的分散于溶液中的单体及引发剂而溶胀。溶胀状态与单体量有关,若单体量较多,足够在短时间内增塑整个
6、种子微粒,则单体在种子微粒中发生均相溶胀并聚合,形成分散均匀的复合微球;若单体量较少,则进行异相溶胀,聚合后得到近似于核-壳型的复合微球(如图2所示)[9-12]。动态溶胀法与种子分散聚合法的不同在于,前者体系中单体主要存在于种子微粒中,而后者单体主要分散在介质中。这两种方法均可用来制得生物活性高分子微球。1.3分步异相凝聚法(StepwiseHeterocoagulationMethod) 首先用乳液聚合法分别合成带有正电荷的小粒径高分子微球和带有负电荷的大粒径微球。利用静电吸引,在溶液中将小微球吸附到大
7、微球的表面,形成外表面较为粗糙的微球聚集体。加热溶液至小微球的玻璃化温度(Tg)之上。这样,包附在大微球周围的小微球将凝结成连续层,整个微球体系的表面随着加热时间的增加而变得光滑,最终可制得核-壳型高分子微球(如图3所示)[13,14]。Okubo[15,16]等用分步异相凝聚法制备了一系列亲水核-疏水壳的复合结构微球。该法制备的高分子微球大小一般从亚微米级到微米级不等。由于制备过程中往往加热温度较高,会导致活性物质的失活,所以此类微球一般只适合于作为生物活性物质的载体。 图2动态溶胀法制备微球 图3分步异
8、相凝聚法制备微球1.4线-球转变法(Coil-to-globuleTransitionMethod) 交联的聚(N-异丙基丙烯酰胺)(PNIPAAm)水凝胶微球的流体动力学尺寸(hydrodynamicsize)随温度变化而变化,同时微球表面的亲水/疏水性也随之发生变化。利用PNIPAAm的这一热敏特性,Qiu[17]等合成了主链为PNIPAAm,支链为亲水性聚合物(如聚环氧乙烷P
此文档下载收益归作者所有