欢迎来到天天文库
浏览记录
ID:48423448
大小:170.50 KB
页数:8页
时间:2020-01-25
《高考导数题型大全及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.第三讲 导数的应用研热点(聚焦突破)类型一利用导数研究切线问题导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0);(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).[例1] (2012年高考安徽卷改编)设函数f(x)=aex++b(a>0).在点(2,f(2))处的切线方程为y=x,求a,b的值.[解析] ∵f′(x)=aex-,∴f′(2)=ae2-=,解得ae2=2或ae2=-(舍去),所以a=,代入原函数可得2++b=3,即b=,故a=,b
2、=.跟踪训练已知函数f(x)=x3-x.(1)求曲线y=f(x)的过点(1,0)的切线方程;(2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围.解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-x+.(2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+
3、a=0有三个相异的实根,记g(t)=2t3-3at2+a...则g′(t)=6t2-6at=6t(t-a).当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1;当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根;当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1.综上所述,a的取值范围是(-∞,-1)∪(1,+∞)
4、.类型二利用导数研究函数的单调性函数的单调性与导数的关系在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.[例2] (2012年高考山东卷改编)已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.[解析] (1)由f(x)=,得f′(x)=,x∈(0,+∞).由于曲线y=f(x)在(1,f(1))处的切线与x轴平行,所以f′(1)=0,因此k=1.(2)由(1)得f′(x)=(1
5、-x-xlnx),x∈(0,+∞).令h(x)=1-x-xlnx,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又ex>0,所以当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).跟踪训练若函数f(x)=lnx-ax2-2x存在单调递减区间,求实数a的取值范围.解析:由题知f′(x)=-ax-2=-,因为函数f(x)存在单调递减区间,所以..f′(x)=-≤0有解.又因为函数的定义域为(0,+∞),则应有ax2+2x-1≥0在(0,+∞)上有实数解.(1)当a>
6、0时,y=ax2+2x-1为开口向上的抛物线,所以ax2+2x-1≥0在(0,+∞)上恒有解;(2)当a<0时,y=ax2+2x-1为开口向下的抛物线,要使ax2+2x-1≥0在(0,+∞)上有实数解,则Δ=>0,此时-17、区间[a,b]上的最大值与最小值的步骤(1)求函数y=f(x)在区间(a,b)内的极值(极大值或极小值);(2)将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[例3] (2012年高考北京卷)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=
7、区间[a,b]上的最大值与最小值的步骤(1)求函数y=f(x)在区间(a,b)内的极值(极大值或极小值);(2)将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[例3] (2012年高考北京卷)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=
此文档下载收益归作者所有