欢迎来到天天文库
浏览记录
ID:48397166
大小:155.36 KB
页数:4页
时间:2019-11-01
《高考数学一轮复习专题6概率统计在高考中的常见题型与求解策略知能训练轻松闯关文.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题讲座六概率、统计在高考中的常见题型与求解策略1.一个三位数的百位,十位,个位上的数字依次为a,b,c,当且仅当a>b,b2、位数有234,243,324,342,432,423,共6个.所以共有6+6+6+6=24个三位数.当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.所以这个三位数为“凹数”的概率是=.2.在区间[-π,π]内随机抽取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-解析:选B.使函数f(x)=x2+2ax-b2+π2有零点,应满足Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b∈[-π,π],建立平面直角3、坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.3.(2016·忻州联考)已知x,y的取值如下表:x2345y2.23.85.56.5从散点图分析,y与x线性相关,且回归方程为y=1.46x+a,则a的值为________.解析:==3.5,==4.5,回归方程必过样本点的中心点(,).把(3.5,4.5)代入回归方程,计算得a=-0.61.答案:-0.614.(2016·武昌区联考)已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号4、码.(1)若第1组抽出的号码为2,则所有被抽出职工的号码为________;(2)分别统计这5名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,则该样本的方差为________.解析:(1)由题意知被抽出职工的号码为2,10,18,26,34.(2)由茎叶图知5名职工体重的平均数x==69,则该样本的方差s2=[(59-69)2+(62-69)2+(70-69)2+(73-69)2+(81-69)2]=62.答案:(1)2,10,18,26,34 (2)625.(2016·武昌区部分学校适应性考试)现有8个质量和外形一样的球,其中A1,A2,A3为红球的编号5、,B1,B2,B3为黄球的编号,C1,C2为蓝球的编号.从三种颜色的球中分别选出一个球,放到一个盒子内.(1)求红球A1被选中的概率;(2)求黄球B1和蓝球C1不全被选中的概率.解:(1)从三种不同颜色的球中分别选出一球,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(6、A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)},共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“红球A1被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,因而P(M)==.(2)用N表示“黄球B1和蓝球C1不全被选中”这一事件,则其对立事件N表示“B1,C1全被选中”这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,7、C1)},事件N由3个基本事件组成,所以P(N)==,由对立事件的概率计算公式得P(N)=1-P(N)=1-=.6.(2016·南昌第一次模拟)某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取50个进行调研,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示.若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查.(1)已知学生甲和学生乙的成绩均在第5组,求学生甲或学生乙被抽中复查的概率;(2)在已抽取到的6名学生中随机抽
2、位数有234,243,324,342,432,423,共6个.所以共有6+6+6+6=24个三位数.当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.所以这个三位数为“凹数”的概率是=.2.在区间[-π,π]内随机抽取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-解析:选B.使函数f(x)=x2+2ax-b2+π2有零点,应满足Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b∈[-π,π],建立平面直角
3、坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.3.(2016·忻州联考)已知x,y的取值如下表:x2345y2.23.85.56.5从散点图分析,y与x线性相关,且回归方程为y=1.46x+a,则a的值为________.解析:==3.5,==4.5,回归方程必过样本点的中心点(,).把(3.5,4.5)代入回归方程,计算得a=-0.61.答案:-0.614.(2016·武昌区联考)已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号
4、码.(1)若第1组抽出的号码为2,则所有被抽出职工的号码为________;(2)分别统计这5名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,则该样本的方差为________.解析:(1)由题意知被抽出职工的号码为2,10,18,26,34.(2)由茎叶图知5名职工体重的平均数x==69,则该样本的方差s2=[(59-69)2+(62-69)2+(70-69)2+(73-69)2+(81-69)2]=62.答案:(1)2,10,18,26,34 (2)625.(2016·武昌区部分学校适应性考试)现有8个质量和外形一样的球,其中A1,A2,A3为红球的编号
5、,B1,B2,B3为黄球的编号,C1,C2为蓝球的编号.从三种颜色的球中分别选出一个球,放到一个盒子内.(1)求红球A1被选中的概率;(2)求黄球B1和蓝球C1不全被选中的概率.解:(1)从三种不同颜色的球中分别选出一球,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(
6、A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)},共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“红球A1被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,因而P(M)==.(2)用N表示“黄球B1和蓝球C1不全被选中”这一事件,则其对立事件N表示“B1,C1全被选中”这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,
7、C1)},事件N由3个基本事件组成,所以P(N)==,由对立事件的概率计算公式得P(N)=1-P(N)=1-=.6.(2016·南昌第一次模拟)某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取50个进行调研,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示.若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查.(1)已知学生甲和学生乙的成绩均在第5组,求学生甲或学生乙被抽中复查的概率;(2)在已抽取到的6名学生中随机抽
此文档下载收益归作者所有