资源描述:
《流体力学计算题与答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、......第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程z0=3m,压差计各水银面的高程分别为z1=0.03m,z2=0.18m,z3=0.04m,z4=0.20m,水银密度,水的密度。试求水面的相对压强p0。解:例2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为θ的Π形管。已知测压计两侧斜液柱读数的差值为L=30mm,倾角θ=30∘,试求压强差p1–p2。解:.学习帮手.......例3:用复式压差计测量两条气体管道的压差(如图所示)。两个U形管的工作液体为水银,密度为ρ2,其连接管充以酒精,密度为ρ1。如果水银
2、面的高度读数为z1、z2、z3、z4,试求压强差pA–pB。。解:点1的压强:pA例4:用离心铸造机铸造车轮。求A-A面上的液体总压力。解:在界面A-A上:Z=-h例5:在一直径d=300mm,而高度H=500mm的园柱形容器中注水至高度h1=300mm,使容器绕垂直轴作等角速度旋转。如图所示。.学习帮手.......(1)试确定使水之自由液面正好达到容器边缘时的转数n1;(2)求抛物面顶端碰到容器底时的转数n2,此时容器停止旋转后水面高度h2将为多少?图解:(1)由于容器旋转前后,水的体积不变(亦即容器中空气的体积不变),有:在xoz坐标系中,自由表面1的方程:对于容器边缘上的
3、点,有:∵(2)当抛物面顶端碰到容器底部时,这时原容器中的水将被甩出一部分,液面为图中2所指。在坐标系中:自由表面2的方程:当这时,有:例6:已知:一块平板宽为B,长为L,倾角q,顶端与水面平齐。求:总压力及作用点。.学习帮手.......解:总压力:压力中心D:方法一:方法二:例7:如图,已知一平板,长L,宽B,安装于斜壁面上,可绕A转动。已知L,B,L1,θ。求:启动平板闸门所需的提升力F。解:例8:平板AB,可绕A转动。长L=2m,宽b=1m,θ=60°,H1=1.2m,H2=3m为保证平板不能自转,求自重G。.学习帮手.......解:图1例9:与水平面成45°倾角的矩形
4、闸门AB(图1),宽1m,左侧水深h1=3m,右侧水深h2=2m,试用图解法求作用在闸门上的静水总压力的大小和作用点。解:如图2所示,作出闸门两侧的静水压强分布图,并将其合成。.学习帮手.......图2静水总压力:设合力的作用点D距A点的距离为l,则由合力矩定理:即,静水总压力的作用点D距A点的距离为2.45m。例10:如图,一挡水弧形闸门,宽度为b(垂直于黑板),圆心角为θ,半径为R,水面与绞轴平齐。试求静水压力的水平分量Fx与铅垂分量Fz。解:压力体如图所示:图1例11:一球形容器由两个半球铆接而成(如图1所示),铆钉有n个,内盛重度为的液体,求每一铆钉所受的拉力。解:如图
5、2所示,建立坐标系取球形容器的上半球面ABC.学习帮手.......作为研究对象,显然由于ABC在yoz平面上的两个投影面大小相等、方向相反,故x方向上的静水总压力;同理。即:ABC仅受铅垂方向的静水总压力而:图2故:方向铅垂向上,即铆钉受拉力。每一铆钉所受的拉力为:第三章例1:已知u=-(y+t2),v=x+t,w=0。求t=2,经过点(0,0)的流线方程。解:t=2时,u=-(y+4),v=x+2,w=0流线微分方程:流线过点(0,0)∴c=10流线方程为:(x+2)2+(y+4)2=20例2:已知某流场中流速分布为:u=-x,v=2y,w=5-z。求通过点(x,y,z)=(
6、2,4,1)的流线方程。解:流线微分方程为:.学习帮手.......由上述两式分别积分,并整理得:即流线为曲面和平面的交线。将代入①可确定:故通过点(2,4,1)的流线方程为:例3.求小孔出流的流量:解:如图,对断面0-0和断面1-1列伯努利方程,不计能量损失,有:上式中:A为小孔的面积,mA为1-1断面的面积。.学习帮手.......例4.用文丘里流量计测定管道中的流量:解:如图,在1-1及2-2断面列伯努利方程,不计能量损失有:m:考虑能量损失及其它因素所加的系数。m<1。例5:输气管入口,已知:ρ’=1000kg/m3,ρ=1.25kg/m3,d=0.4m,h=30mm。求
7、:Q=?.学习帮手.......解:对0—0和1—1断面列伯努利方程,不计损失,有:例6:如图,已知:V1、A1、A2;θ;相对压强p1;且管轴线在水平面内,试确定水流对弯管的作用力。解:对1-1及2-2断面列伯努利方程,不计水头损失,有:在x方向列动量方程,有:在y方向列动量方程,有:例7:水渠中闸门的宽度B=3.4m。闸门上、下游水深分别为h1=2.5m,h2=0.8m,求:固定闸门应该施加的水平力F。.学习帮手.......解:对1-1及2-2断面列伯努利方程,不计水头损失