欢迎来到天天文库
浏览记录
ID:48208748
大小:1.08 MB
页数:16页
时间:2020-01-22
《高二数学学考知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.必修1知识点整理第一章:集合1.知识网络2.注意的地方(1)对于集合,一定要抓住集合的代表元素,及元素的性,性,性。(2)进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。注重借助于数轴和韦恩图解集合问题。空集是一切集合的,是一切非空集合的。(3)注意下列性质:集合的所有子集的个数是;若;。二.函数1.函数的概念:定义设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有且仅有一个元素y与x对应,则称f是集合A到集合B的映射。这时,称y是x在映射f的作用下的象,记作f(x)。于是y=f(x),x称作y的原象。映射f也可记为:f:A→B
2、,x→f(x).其中A叫做映射f的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f的值域,通常叫作f(A)。2.构成函数的三要素:。3.求函数定义域的常用方法:(1)分式的分母不等于零;(2)偶次方根的被开方数大于等于零;(3..)对数的真数大于零;(4)指数函数和对数函数的底数大于零且不等于1;(5)三角函数正切函数中。(6)如果函数是由实际意义确定的解析式,据自变量的实际意义确定其取值范围。4.求函数解析式的常用方法:(1)、换元法;(2)、配方法;(3)、判别式法;(4)、不等式法;(5)、单调性法;关注:分段函数的概念。分段函数是在其定义域的不同子集
3、上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。在求分段函数的值时,一定首先要判断属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。5.求函数值域(最值)的常用方法:(1)换元法;(2)、配方法;(3)、判别式法;(4)、不等式法;(5)、单调性法。6.函数的奇偶性(在整个定义域内考虑)(1)定义:;(2)判断方法:Ⅰ、定义法:步骤:①求出定义域;判断定义域是否关于;②.求;③.比较或的关系。Ⅱ、图象法:即根据图象的对称性判别;(3)已知::若非零函数的奇偶性相同,则在公共定义域内为偶函数;若非零
4、函数的奇偶性相反,则在公共定义域内为奇函数。(4)常用的结论:若是奇函数,且,则;若是偶函数,则;反之不然。7.函数的单调性:(1)函数单调性的定义:;(2)证明函数单调性的步骤:①设;②作差;③.。(3)求单调区间的方法:①定义法;②图象法;③复合函数在公共定义域上的单调性:若f与g的单调性相同,则为增函数;若f与g的单调性相反,则为减函数。“同增异减”注意:先求定义域,单调区间是定义域的子集。(3)一些有用的结论:a.奇函数在其对称区间上的单调性;b.偶函数在其对称区间上的单调性;c.在公共定义域内,增函数增函数是;减函数减函数是;增函数减函数是;减函数增函数是。8.指
5、对数的运算性质:;;;;()();()..loga(MN)=;loga()=;loga=;=9.初等函数的图象和性质:表1指数函数对数数函数定义域值域图象性质过定点__________过定点___________减函数增函数减函数增函数底数越小越接近坐标轴底数越大越接近坐标轴底数越小越接近坐标轴底数越大越接近坐标轴表2幂函数奇函数..偶函数第一象限性质减函数增函数过定点必修2知识点归纳整理第一章空间几何体1.空间几何的几何特征:1)棱柱:有两个面互相平行,其余各个面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱。棱锥:有一个面是,其余各面都是有一个
6、公共顶点的,由这些面所围成的多面体叫做棱锥。棱台:用一个于棱锥底面的平面截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。2)圆柱:以的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。圆锥:以直角三角形的一条所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。圆台:用于圆锥底面的平面截圆锥,底面与截面之间的部分叫做圆台。3)球:以所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。2.空间几何的表示(1)三视图:正视图、俯视图、侧视图。画三视图注意:长,高;宽。(2)空间几何体的直观图——用斜二侧画法的画图规则:。(3)中心投影:;平
7、行投影:。3.空间几何体的表面积(1)棱柱、棱椎、棱台的表面积,即各个面的面积之和。(2)圆柱、圆锥、圆台的表面积:S圆柱表=S圆锥表=S圆台表=(3)柱体、锥体、台体的体积:V柱=V锥=V台=(4)球的表面积和体积:S球表=V球=4.(补充)几何体的外接球问题:(1)棱长为的正四面体外接球半径为,内切球半径为。(2)长、宽、高分别为的长方体外接球半径为。(3)棱长为的正方体的外接球半径为,内切球半径为。第二章点、直线、平面的位置关系..1.平面:公理1:如果一条直线上的两点在一个平面内,那么这条直线上都在这个平面
此文档下载收益归作者所有