全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc

全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc

ID:48199484

大小:206.80 KB

页数:17页

时间:2019-11-15

全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc_第1页
全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc_第2页
全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc_第3页
全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc_第4页
全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc_第5页
资源描述:

《全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第4讲导数的热点问题[考情考向分析]利用导数探求函数的极值、最值是函数的基本问题,高考中常与函数零点、方程根及不等式相结合,难度较大.热点一利用导数证明不等式用导数证明不等式是导数的应用之一,可以间接考查用导数判定函数的单调性或求函数的最值,以及构造函数解题的能力.例1(2018·全国Ⅰ)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.(1)解f(x)的定义域为(0,+∞),f′(x)=aex-.由题设知,

2、f′(2)=0,所以a=.从而f(x)=ex-lnx-1,f′(x)=ex-.当02时,f′(x)>0.所以f(x)的单调递增区间为(2,+∞),单调递减区间为(0,2).(2)证明当a≥时,f(x)≥-lnx-1.设g(x)=-lnx-1(x∈(0,+∞)),则g′(x)=-.当01时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.思维升华用导数证明不等式的

3、方法(1)利用单调性:若f(x)在[a,b]上是增函数,则①∀x∈[a,b],则f(a)≤f(x)≤f(b);②对∀x1,x2∈[a,b],且x1

4、线方程;(2)证明:当a≥1时,f(x)+e≥0.(1)解f′(x)=,f′(0)=2,f(0)=-1.因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.(2)证明当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.当x<-1时,g′(x)<0,g(x)单调递减;当x>-1时,g′(x)>0,g(x)单调递增.所以g(x)≥g(-1)=0.因此f(x)+e≥0.热点二利用导数讨论方程根的个数方程的根、

5、函数的零点、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的走势,通过数形结合思想直观求解.例2(2018·雅安三诊)设函数f(x)=(x-1)ex-x2.(1)当k<1时,求函数f(x)的单调区间;(2)当k≤0时,讨论函数f(x)的零点个数.解(1)函数f(x)的定义域为(-∞,+∞),f′(x)=ex+(x-1)ex-kx=xex-kx=x,①当k≤0时,令f′(x)>0,解得x>0,令f′(x)<0,解得x<0,所以f(x)的单调

6、递减区间是(-∞,0),单调递增区间是(0,+∞),②当00,解得x0,令f′(x)<0,解得lnk0,又f(x)在[0,+∞)上单调递增,所以函数f(x)在[0,+∞)上只有一个零点.在区间(-∞,0)中,因为f(x)=(x-1)ex-x2>x-1-x2,取x=-1∈(-∞,0),于是f>-1-2=->0,又f(x)在(-

7、∞,0)上单调递减,故f(x)在(-∞,0)上也只有一个零点,所以函数f(x)在定义域(-∞,+∞)上有两个零点;②当k=0时,f(x)=(x-1)ex在单调递增区间[0,+∞)内,只有f(1)=0.而在区间(-∞,0)内,f(x)<0,即f(x)在此区间内无零点.所以函数f(x)在定义域(-∞,+∞)上只有唯一的零点.综上所述,当k<0时,函数f(x)有两个零点,当k=0时,f(x)只有一个零点.思维升华(1)函数y=f(x)-k的零点问题,可转化为函数y=f(x)和直线y=k的交点问题.(2

8、)研究函数y=f(x)的值域,不仅要看最值,而且要观察随x值的变化y值的变化趋势.跟踪演练2(2018·天津)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极值;(3)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.解(1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。