Yi-Ma (super-resolution)【深度学习】.ppt

Yi-Ma (super-resolution)【深度学习】.ppt

ID:48029373

大小:6.47 MB

页数:24页

时间:2020-01-10

Yi-Ma (super-resolution)【深度学习】.ppt_第1页
Yi-Ma (super-resolution)【深度学习】.ppt_第2页
Yi-Ma (super-resolution)【深度学习】.ppt_第3页
Yi-Ma (super-resolution)【深度学习】.ppt_第4页
Yi-Ma (super-resolution)【深度学习】.ppt_第5页
资源描述:

《Yi-Ma (super-resolution)【深度学习】.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ImageSuper-resolutionviaSparseRepresentationJianchaoYang,JohnWright,YiMaCoordinatedScienceLaboratoryDepartmentofElectricalandComputerEngineeringUniversityofIllinoisatUrbana-ChampaignSIAMImagingScienceSymposium,July7,2008Super-resolutionassparserepresentationindictionaryof

2、rawimagepatchesSolutionvia-normminimizationGlobalconsistency,featureselectionExperiments:QualitativecomparisontopreviousmethodsQuantitativecomparisontopreviousmethodsConclusionsandDiscussionsOUTLINELEARNING-BASEDSUPER-RESOLUTION–ProblemformulationProblem:givenasinglelow-r

3、esolutioninput,andasetofpairs(high-andlow-resolution)oftrainingpatchessampledfromsimilarimages,reconstructahigh-resolutionversionoftheinput.OutputOriginalInputTrainingpatchesAdvantage:morewidelyapplicablethanreconstructive(manyimage)approaches.Difficulty:single-imagesuper

4、-resolutionisanextremelyill-posedproblem.LEARNING-BASEDSUPER-RESOLUTION–PriorworkHowshouldweregularizethesuper-resolutionproblem?Markovrandomfield[Freemanet.Al.IJCV‘00]Primalsketchprior[Sunet.Al.CVPR‘03]Neighborembedding[Changet.Al.CVPR‘04]Softedgeprior[Daiet.Al.ICCV‘07]?

5、LEARNING-BASEDSUPER-RESOLUTION–PriorworkHowshouldweregularizethesuper-resolutionproblem?Markovrandomfield[Freemanet.Al.IJCV‘00]Primalsketchprior[Sunet.Al.CVPR‘03]Neighborembedding[Changet.Al.CVPR‘04]Softedgeprior[Daiet.Al.ICCV‘07]?Ourapproach:High-resolutionpatcheshaveasp

6、arselinearrepresentationwithrespecttoanovercompletedictionaryofpatchesrandomlysampledfromsimilarimages.outputhigh-resolutionpatchhigh-resolutiondictionaryforsomewithLINEARSPARSEREPRESENTATION–SRasCompressedSensingWedonotdirectlyobservethehighresolutionpatch,butrather(feat

7、uresof)itslow-resolutionversion:Theinputlow-resolutionpatchsatisfieslinearmeasurementsofsparsecoefficientvector!dictionaryoflow-resolutionpatches.downsampling/blurringoperatorLINEARSPARSEREPRESENTATION–SRasCompressedSensingIfwecanrecoverthesparsesolutiontotheunderdetermin

8、edsystemoflinearequations,wecanreconstructasconvexrelaxationThisproblemcanbeefficientlysolvedbyl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。