00-Editorial.OnMachineLearning.pdf

00-Editorial.OnMachineLearning.pdf

ID:48016279

大小:331.51 KB

页数:6页

时间:2019-07-10

00-Editorial.OnMachineLearning.pdf_第1页
00-Editorial.OnMachineLearning.pdf_第2页
00-Editorial.OnMachineLearning.pdf_第3页
00-Editorial.OnMachineLearning.pdf_第4页
00-Editorial.OnMachineLearning.pdf_第5页
资源描述:

《00-Editorial.OnMachineLearning.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MachineLearning1:5-10,1986©1986KluwerAcademicPublishers,Boston-ManufacturedinTheNetherlandsEditorial:OnMachineLearningThecentralroleoflearningAlthoughresearchersinartificialintelligenceandpsychologyhavelongrecognizedtheimportanceoflearning,thistopichasnotalwaysbeenthe

2、centralfocusofthesefields.InthefirstyearsofAI,considerableattentionwasgiventolearningissues,butaspatternrecognitionandAIdevelopedseparateidentities,learningresearchbecameassociatedwiththeformerwhilethelatterconcentratedonproblemsofrepresentationandperformance.Asimilar

3、phenomenonoccurredinpsychology.Thebehavioristparadigmwasalmostexclusivelyconcernedwithlearningphenomena,butasinformationprocessingpsychologygainedinpopularity,psychologiststurnedtheirsightstowardsmemoryandperformancephenomenaandallbutabandonedeffortstoexplainthelearni

4、ngprocess.However,thepastfiveyearshaveseenaresurgenceofinterestinlearningwithinbothartificialintelligenceandcognitivepsychology.Thishasresultedpartlyfromdissatisfactionwithpureperformancemodelsofintelligence.Oneofthemajorin-sightsofbothfieldshasbeenthat,exceptinthesim

5、plestdomains,intelligentbehaviorrequiressignificantknowledgeofthosedomains.AlthoughthisinsighthasledtosuccessfulappliedAIsystemsandtoaccuratepsychologicalmodelsofdomain-specificperformance,ithasnotledtosystemsortheorieshavinganygreatdegreeofgenerality.Byrefocusingthei

6、reffortsonlearning,manyresearchershopetodiscovermoregeneralprinciplesofintelligence.Inthecaseofpsychology,suchprin-cipleswouldleadtomoreencompassingtheoriesofhumanbehaviorthatmovebeyondparticulardomains.InthecaseofappliedAI,generallearningmethodsmightletoneautomatethe

7、constructionofknowledge-intensivesystems,savingman-yearsofeffortforeachapplicationarea.Yetdissatisfactionwithperformancemodelsisnotsufficienttoaccountfortheex-plosionofresearchoncomputationalapproachestolearning.Onemustalsocredittheadvancesmadeonrepresentationalandper

8、formanceissueswithinthetwofieldsoverthepasttwodecades.Sinceanylearningsystemmustincorporaterepresenta-tionalandperformanceco

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签