2017新北师大版九年级(上册)数学导学案

2017新北师大版九年级(上册)数学导学案

ID:48001432

大小:1.51 MB

页数:65页

时间:2019-11-09

2017新北师大版九年级(上册)数学导学案_第1页
2017新北师大版九年级(上册)数学导学案_第2页
2017新北师大版九年级(上册)数学导学案_第3页
2017新北师大版九年级(上册)数学导学案_第4页
2017新北师大版九年级(上册)数学导学案_第5页
资源描述:

《2017新北师大版九年级(上册)数学导学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、......第二章一元二次方程第一节认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.预习案一、预习教材二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个

2、问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?答:设五个连续整数中间的一个数为x,由题意可列方程,得_________________________.三、自主提问探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能

3、制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那铁皮各角应切去多大的正方形?你能设出未知数,列出相应的方程吗?归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a、b、c为常数,a≠0)这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;bx是一次项,b是一次项系数;c是常数项.跟踪练习:1.下列方程中,是一元二次方程的是(  )A.x2+2y-1=0  B.

4、x+2y2=5  C.2x2=2x-1 D.x2+-2=02.将方程(x+3)2=8x化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?学习参考......跟踪练习:1.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是______.2.已知方程(m+2)x2+(m+1)x-m=0,当m满足______时,它是一元一次方程;当m满足________时,它是一元

5、二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有(  )①2x2-1=0;②ax2+bx+c=0;③(x+2)(x-3)=x2-3;④2x2-=0.A.1个   B.2个   C.3个  D.4个2.把方程(x-)(x+)+(2x-1)2=0化成一元二次方程的一般形式为(  )A.5x2-4x-4=0B.x2-5=0C.5x2-2x+1=0D.5x2-4x+6=03.下列方程是一元二次方程的是(  )A.B.C.D.4.方程中,关于、、的说法正确的是()A.B.C.D.二、能力提升1.阅读材料,解答问题:有一块长80

6、cm,宽60cm的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:(1)如果设小正方形的边长为xcm,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么?是哪一种方程?并指出其各项的系数.2.已知关于x的方程(m-2)x

7、m

8、+3x-4=0是一元二次方程,那么m的值是(  )A.2     B.±2     C.-2    D.1学习参考..

9、....第一节认识一元二次方程(2)学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为________

10、___列表:x012345678x2-36问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为_________.根据题意,得________.整理,得______________.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。