资源描述:
《2019-2020年九年级数学上册25概率初步复习教案新版新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年九年级数学上册25概率初步复习教案新版新人教版一、复习目标(1)理解什么是必然事件、不可能事件和随机事件。(2)在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义。(3)能运用列举法(包括列表法和画树形图法)计算概率简单事件发生的概率。(4)能够通过试验,获得事件发生的概率;知道大量重复试验时概率可作为事件发生概率的估计值,理解频率与概率的的区别与联系。(5)通过实例进一步丰富对概率的认识,并能解决一些实际问题。二、课时安排1三、复习重难点1.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学
2、概念,理解概率的取值范围的意义。2.能够通过试验,获得事件发生的概率;知道大量重复试验时概率可作为事件发生概率的估计值,理解频率与概率的的区别与联系。四、教学过程(一)知识梳理1.概率的有关概念:(1)必然事件:在一定条件下,有些事件,这样的事件称为必然事件.(2)不可能事件:在一定条件下,有些事件发生,这样的事件称为不可能事件.(3)确定事件:统称确定事件。(4)随机事件:在一定条件下,有些事件事件,称为随机事件。(5)不确定事件:许多事情我们无法确定它,这些事情称为不确定事件.(6)概率的定义:对于一个随机事件A,我们把刻画数值,称为随机事件A发生的概率2.概率的计算:(1)概率的
3、计算有理论计算和实验计算两种方式.其一是当试验次数很多时,一个事件发生的频率也稳定附近.因此,我们可以通过多次试验,用一个事件概率;其二对于某些特殊类型的试验,而通过列举法进行分析就能得到事件的概率.例如掷一个骰子(骰子的构造相同,质地均匀),向上的一面的点数有6种可能,即1,2,3,4,5,6.因此每种结果的可能性相等,都是.(2)试验的特点是:1.一次试验中,可能出现的结果有限多个;2.一次试验中,各种结果发生的可能性相等.具有这些特点的试验称为.(3)如果一次试验中共有n种可能出现的结果,而且这些结果出现的可能性都相同,其中事件A包含的结果有m种,那么事件A发生的概率P(A)=,
4、可以利用列表法或树状图来球其中的m、n,从而得到事件A的概率.(4)不可能事件发生的概率为,即P(不可能事件)=;必然事件发生的概率为,即P(必然事件)=;如果A为不确定事件,那么0
5、票的中奖概率为,是指中奖的机会是,在7张彩票中不一定会中奖;为了了解一批炮弹的杀伤力,调查具有破坏性,应采用抽查方式比较合适;“在50位同学中恰有2位同学生日是同一天”是随机事件.归纳:判断事件类型的流程类型二、求事件的概率【主题训练2】(黄冈中考)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).(2)求摸出的两张纸牌同为红色的概率.【自主解答】(1)树状图法:列
6、表法:ABCDAABACADBBABCBDCCACBCDDDADBDC(2)一共有12种情况,符合条件的有2种,即【主题升华】求随机事件概率的类型及策略1.有限等可能性事件:(1)事件只包含一个因素:用列举的方法,根据公式P=求得结果.(2)事件包含两个因素:用列表或画树状图的方法,根据公式P=求得结果.(3)事件包含三个因素:用画树状图的方法,根据公式P=求得结果.2.无限等可能性事件:与面积有关的事件的概率可以通过区域面积与总面积的比值来求解.类型三概率的应用【主题训练3】(青岛中考)小明和小刚玩摸纸牌游戏,如图,两组相同的纸牌,每组两张,纸面数字分别是2和3,将两组牌背面朝上,洗
7、匀后从每组牌中各摸出一张,称为一次游戏.当两张牌牌面数字之和为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.【自主解答】列表得:小刚牌面和小明牌面2322+2=偶2+3=奇33+2=奇3+3=偶∴P(和为奇数)=同理,P(和为偶数)=故小明所得分值=小刚所得分值为∴游戏对小刚不公平.【主题升华】关于游戏中概率的两个注意点1.判断游戏公平的标准:游戏双方获胜的概率(或游戏得分)是否相等,是判断游戏是否公平的唯一标准;若相等,