三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)

三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)

ID:47865857

大小:1.43 MB

页数:31页

时间:2019-10-30

三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)_第1页
三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)_第2页
三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)_第3页
三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)_第4页
三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)_第5页
资源描述:

《三年高考(2017_2019)高考数学真题分项汇编专题06立体几何(解答题)文(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题06立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【答案】(1)见解析;(2).【解析】(1)连结.因为M,E分别为的中点,所以,且.又因为N为的中点,所以.由题设知,可得,故,因此四边形MNDE为平行四边形,.又平面,所以MN∥平面.(2)过C作C1E的垂线,垂足为H.由已知可得,,所以D

2、E⊥平面,故DE⊥CH.从而CH⊥平面,故CH的长即为C到平面的距离,由已知可得CE=1,C1C=4,所以,故.从而点C到平面的距离为.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明

3、:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积.【答案】(1)见详解;(2)18.【解析】(1)由已知得B1C1⊥平面ABB1A1,BE平面ABB1A1,故.又,所以BE⊥平面.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以,故AE=AB=3,.作,垂足为F,则EF⊥平面,且.所以,四棱锥的体积.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全

4、国Ⅲ卷文数】图1是由矩形ADEB,ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得ABBE,ABBC,故AB平面BCGE.又因为AB平面ABC,所以

5、平面ABC平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB平面BCGE,所以DE平面BCGE,故DECG.由已知,四边形BCGE是菱形,且∠EBC=60°得EMCG,故CG平面DEM.因此DMCG.在DEM中,DE=1,EM=,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.4.【2019年高考北京卷文数】如图,在四棱锥中,平面A

6、BCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为平面ABCD,所以.又因为底面ABCD为菱形,所以.所以平面PAC.(2)因为PA⊥平面ABCD,平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PA

7、B.所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF平面PAE,EG平面PAE,所以CF∥平面PAE.【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.

8、【2019年高考天津卷文数】如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,.(1)设G,H分别为PB,AC的中点,求证:平面;(2)求证:平面;(3)求直线AD与平面所成角的正弦值.【答案】(1)见解析;(2)见解析;(3).【解析】(1)连接,易知,.又由,故.又因为平面PAD,平面PAD,所以平面PAD.(2)取棱PC的中点N,连接DN.依题意,得DN⊥PC,又因为平面平面PCD,平面平面,所以平面PAC,又平面PAC,故.又已知,,所

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。