欢迎来到天天文库
浏览记录
ID:47865569
大小:146.28 KB
页数:4页
时间:2019-10-29
《2019_2020学年高中数学课时分层作业15直线与平面垂直的性质平面与平面垂直的性质新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业(十五) 直线与平面垂直的性质平面与平面垂直的性质(建议用时:45分钟)[基础达标练]一、选择题1.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( )A.相交 B.平行C.异面D.相交或平行B [由于这条垂线与圆柱的母线都垂直于底面,所以它们平行.]2.已知m,n为两条不同直线,α,β为两个不同平面,给出下列命题:①⇒n∥α;②⇒m∥n;③⇒α∥β;④⇒m∥n.其中正确命题的序号是( )A.②③B.③④C.①②D.①②③④A
2、[①中n,α可能平行或n在平面α内;②③正确;④两直线m,n平行或异面,故选A.]3.如图所示,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是( )A.EF⊥平面αB.EF⊥平面βC.PQ⊥GED.PQ⊥FHB [因为EG⊥平面α,PQ⊂平面α,所以EG⊥PQ.若EF⊥平面β,则由PQ⊂平面β,得EF⊥PQ.又EG与EF为相交直线,所以PQ⊥平面EFHG,所以PQ⊥GH,故选B.]4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC
3、⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥mB.AC⊥mC.AB∥βD.AC⊥βD [如图,AB∥l∥m,AC⊥l,m∥l⇒AC⊥m,AB∥l⇒AB∥β.故选D.]5.已知平面α、β、γ,则下列命题中正确的是( )A.α⊥β,β⊥γ,则α∥γB.α∥β,β⊥γ,则α⊥γC.α∩β=a,β∩γ=b,α⊥β,β⊥γ,则a⊥bD.α⊥β,α∩β=a,a⊥b,则b⊥αB [A中α,γ可以相交;C中如图:a与b不一定垂直;D中b仅垂直于α的一条直线a,不能判定b⊥α.]二、填空题6.已知
4、AF⊥平面ABCD,DE⊥平面ABCD,如图所示,且AF=DE,AD=6,则EF=________.6 [因为AF⊥平面ABCD,DE⊥平面ABCD,所以AF∥DE,又AF=DE,所以AFED是平行四边形,所以EF=AD=6.]7.已知直线m⊂平面α,直线n⊂平面α,m∩n=M,直线a⊥m,a⊥n,直线b⊥m,b⊥n,则直线a,b的位置关系是________.a∥b [因为直线a⊥m,a⊥n,直线m⊂平面α,直线n⊂平面α,m∩n=M,所以a⊥α,同理可证直线b⊥α.所以a∥b.]8.空间四边形ABCD中,平面ABD
5、⊥平面BCD,∠BAD=90°,且AB=AD,则AD与平面BCD所成的角是________.45° [如图,过A作AO⊥BD于O点,∵平面ABD⊥平面BCD,∴AO⊥平面BCD,则∠ADO即为AD与平面BCD所成的角.∵∠BAD=90°,AB=AD.∴∠ADO=45°.]三、解答题9.如图,PA⊥正方形ABCD所在平面,经过A且垂直于PC的平面分别交PB,PC,PD于E,F,G,求证:AE⊥PB.[证明] 因为PA⊥平面ABCD,所以PA⊥BC.又ABCD是正方形,所以AB⊥BC.因为AB∩PA=A,所以BC⊥平面P
6、AB.因为AE⊂面PAB,所以BC⊥AE.由PC⊥平面AEFG,得PC⊥AE,因为PC∩BC=C,所以AE⊥平面PBC.因为PB⊂平面PBC,所以AE⊥PB.10.如图,已知平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD的长.[解] 连接BC.∵α⊥β,α∩β=AB,BD⊥AB,∴BD⊥平面α.∵BC⊂α,∴BD⊥BC,在Rt△BAC中,BC===5,在Rt△DBC中,CD===13,∴CD长为13cm.[能力提升练
7、]1.如图所示,三棱锥PABC的底面在平面α上,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B是定点,则动点C运动形成的图形是( )A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点D [∵平面PAC⊥平面PBC,AC⊥PC,AC⊂平面PAC,且平面PAC∩平面PBC=PC,∴AC⊥平面PBC.又∵BC⊂平面PBC,∴AC⊥BC,∴∠ACB=90°,∴动点C运动形成的图形是以AB为直径的圆,除去A和B两点,故选D.]2.如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的
8、中点.若CD=2,平面ABCD⊥平面DCEF,则线段MN的长等于________. [取CD的中点G,连接MG,NG.因为ABCD,DCEF为正方形,且边长为2,所以MG⊥CD,MG=2,NG=.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF,可得MG⊥NG,所以MN==.]
此文档下载收益归作者所有