matlab实现的C45分类决策树算法

matlab实现的C45分类决策树算法

ID:47845835

大小:86.50 KB

页数:6页

时间:2019-11-26

matlab实现的C45分类决策树算法_第1页
matlab实现的C45分类决策树算法_第2页
matlab实现的C45分类决策树算法_第3页
matlab实现的C45分类决策树算法_第4页
matlab实现的C45分类决策树算法_第5页
资源描述:

《matlab实现的C45分类决策树算法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、functionD=C4_5(train_featuresAtrain_targetszinc_node,region)%ClassifyusingQuinlan*sC4・5algorithm%Inputs:%features-Trainfeatures%targets-Traintargets%inc_node-Percentageofincorrectlyassignedsamplesatanode%region一Decisionregionvector:[—xx-yynumber_of_points]%%Outputs%D一Decisionsufrace%NOTE:Inthis

2、implementAtionitisassumedthatafeaturevectorwithfewerthan10uniquevalues(theparameterNu)%isdiscrete,andwillbetreatedassuch・Othervectorswillbetreatedascontinuous[NizM]inc_nodeNu=size(train_features);=inc_node*M/100;=10;%ForthedecisionregionN=region(5);mx=ones(Nf1)*linspace(region(1),region(2),N);m

3、y=linspace(region(3),region(4),N)ones(1rN);flatxy=[mx(:),my(:)]1;%Preprocessing%[frtrUW,m]=PCA(train_features,train_t^rg㊀ts,Ni,region);%train_features=UW*(train_features一m*ones(1,M));;%Findwhichoftheinputfeaturesarediscrete,anddiscretisizethecorresponding%dimensiononthedecisionregiondiscrete_di

4、m=zeros(1,Ni);fori=1:Ni,Nb=length(unique(train_features(i,:)));if(Nb<=Nu),%Thisisadiscretefeaturediscrete_dim(i)=Nb;[H,flatxy(i,:)]=high_histogram(flatxy(i,:),Nb);endend%Buildthetreerecursivelydisp(1Buildingtree!)tree=make_tree(train_features,train_targets,inc_node,discrete_dim,max(discrete_dim

5、),0);%Makethedecisionregionaccordingtothetreedisp('Bui丄dingdecisionsurfaceusingthetree1)targets=use_tree(flatxy,1:N^2,tree,discrete_dim,unique(train_targets));D=reshape(targets,N,N);%ENDfunctiontargets=use_tree(features,indices,tree,discrete_dim,Uc)%Classifyrecursivelyusingatreetargets=zeros(1,

6、size(features,2));if(tree.dim==0)%Reachedtheendofthetreetargets(indices)=tree.child;breakend%ThisisnotthelastlevelofthetreeAso:%First,findthedimensionwearetoworkondim=tree.dim;dims=1:size(features,1);%Andclassifyaccordingtoitif(discrete_dim(dim)==0),%Continuousfeaturein=indices(find(features(di

7、m,indices)<=tree・sp丄);targets=targets+use_tree(features(dims,:),in,tree・chi]_d(l),discrete_dim(dims),Uc);in=indices(find(features(dim,indices)>tree・sp]_it_J_oc));targets=targets+use_tree(features(dims,:),in,tree.chi丄d(2))discrete_

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。