基于-MATLAB的BP神经网络的数字图像识别

基于-MATLAB的BP神经网络的数字图像识别

ID:47842774

大小:336.00 KB

页数:18页

时间:2019-11-24

基于-MATLAB的BP神经网络的数字图像识别_第1页
基于-MATLAB的BP神经网络的数字图像识别_第2页
基于-MATLAB的BP神经网络的数字图像识别_第3页
基于-MATLAB的BP神经网络的数字图像识别_第4页
基于-MATLAB的BP神经网络的数字图像识别_第5页
资源描述:

《基于-MATLAB的BP神经网络的数字图像识别》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、基于MATLABBP神经网络的数字图像识别基于MATLABBP神经网络的数字图像识别【摘要】随着现代社会的发展,信息的形式和数量正在迅猛增长。其中很大一部分是图像,图像可以把事物生动的呈现在我们面前,让我们更直观地接受信息。同时,计算机已经作为一种人们普遍使用的工具为人们的生产生活服务。如今我们也可以把这些技术应用在交通领域。作为智能交通系统(InteUigentTrafficSystem,简称ITS)中的一个重要组成部分的车牌识别技术,当然就是其中的重点研究对象。车辆牌照识别(LicenseP1ateRecognition,简称LPR),是一种关于计算机的包括图像处理、数学技术、数据

2、库、信息技术以及智能技术于一体的综合技术。用MATLAB做车牌识别比用其他工具有许多优势,因为MATLAB在图像的灰度化、二值化、滤波等方面都有很大优势,所以,本次实验我们利用MATLAB的这些优点来对车牌进行识别。【关键词】BP神经网络;图像识别;字符识别;特征提取;车牌;Matlab一课题研究背景(一)图像识别的提出及应用随着信息化时代的不断发展,人们越来越多地使用信息化的手段来解决各种问题——办公自动化、先进制造业、电子商务等利用计算机技术而产生的新兴行业正不断靠近我们的生活。在信息社会中,我们每天都接触大量的数据——工作数据、个人数据、无意间获得的数据等——在这些数据中,有些数

3、据需要我们人工处理,而有些则可以利用计算机快速准确的完成——字符识别就是其中的一个范畴。字符识别是一种图像识别技术,他的输入是一张带有某种字符的图片,而输出则是计算机中对于图片中字符的反应结果。所以,可以广泛的应用于各种领域:如,车牌检测、手写识别、自动阅读器、机器视觉……在生活生产的各个方面都起到了非常重要的作用。(二)图像识别技术的发展趋势虽然图像识别技术还不是非常成熟,但现其已经有了很多可喜的成果,比如图像模式识别,图像文字识别。并且其还在飞速的发展着,图像识别的应用正朝着不同的领域渗透着,像计算机图像生成,图像传输与图像通信,高清晰度电视,机器人视觉及图像测量,办公室自动化,像

4、跟踪及光学制导 ,医用图像处理与材料分析中的图像分析系统,遥感图像处理和空间探测,图像变形技术等等。从所列举的图像技术的多方面应用及其理论基础可以看出,它们无一不涉及高科技的前沿课题,充分说明了图像技术是前沿性与基础性的有机统一。可以预计21世纪,图像技术将经历一个飞跃发展的成熟阶段,为深入人民生活创造新的文化环境,成为提高生产的自动化、智能化水平的基础科学之一。图像技术的基础性研究,特别是结合人工智能与视觉处理的新算法,从更高水平提取图像信息的丰富内涵,成为人类运算量最大、直观性最强,与现实世界直接联系的视觉和“形象思维”这一智能的模拟和复现,是一个很难而重要的任务。“图像技术”这一

5、上世纪后期诞生的高科技之花,其前途是不可限量的。随着21世纪经济全球化和信息时代的发展,作为信息来源的自动检测、图像识别技术越来越受到人们的重视。近年来计算机的飞速发展和数字图像处理技术的日趋成熟,为传统的交通管理带来了巨大转变。图像处理技术发展相当快,而其中对汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。汽车牌照自动识别系统就是在这样的背景与目的下进行研究开发的。车辆牌照识别(LicensePlateRecognition,LPR)技术作为交通管理自动化的重要手段之一,其任务是分析、

6、处理汽车监控图像,自动识别汽车牌照号码,并进行相关智能化数据库管理。(三)图像识别的机理图像识别是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。例如模板匹配模型。这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。这个模型简单明了,也容易得到实际应用。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的

7、图像,也能识别与模板不完全一致的图像。例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。这种模型认为,在长时记忆中存储的并不是所要识别的无数个模板,而是图像的某些“相似性”。从图像中抽象出来的“相似性”就可作为原型,拿它来检验所要识别

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。