2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版

2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版

ID:47799913

大小:411.30 KB

页数:9页

时间:2019-11-15

2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版_第1页
2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版_第2页
2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版_第3页
2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版_第4页
2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版_第5页
资源描述:

《2019-2020年高考数学大一轮复习 8.1空间几何体学案 理 苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学大一轮复习8.1空间几何体学案理苏教版导学目标:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.会用斜二测画法画出简单空间图形的直观图.自主梳理1.多面体的结构特征(1)棱柱的上下底面________,侧棱都________且__________,上底面和下底面是________的多边形.侧棱和底面________的棱柱叫做直棱柱.底面为________的直棱柱叫正棱柱.(2)棱锥的底面是任意多边形,侧面是有一个___

2、_____的三角形.棱锥的底面是________,且顶点在底面的正投影是________,这样的棱锥为正棱锥.(3)棱台可由________________的平面截棱锥得到,其上下底面的两个多边形________.________被平行于底面的平面所截,截面和底面之间的部分叫正棱台.2.旋转体的结构特征将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做________、________、________,这条直线叫做____.垂直于轴的

3、边旋转而成的圆面叫做________.半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做________,球面围成的几何体叫做________,简称____.3.空间几何体的直观图画空间几何体的直观图常用________画法,其规则是:(1)在空间图形中取互相垂直的x轴和y轴,两轴交于O点,再取z轴,使∠xOz=90°,且∠yOz=90°.(2)画直观图时把它们画成对应的x′轴、y′轴和z′轴,它们相交于点O′,并使∠x′O′y′=__________________,∠x′O′z′=90°,x

4、′轴和y′轴所确定的平面表示水平面.(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于________________________的线段.(4)已知图形中平行于x轴或z轴的线段,在直观图中保持原长度________,平行于y轴的线段,长度变为____________.自我检测1.下列四个条件能使棱柱为正四棱柱的是________(填序号).①底面是正方形,有两个侧面是矩形;②底面是正方形,有两个侧面垂直于底面;③底面是菱形,具有一个顶点处的三条棱两两垂直;④每个侧面都是全

5、等矩形的四棱柱.2.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是________.3.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.4.长方体AC1中,从同一个顶点出发的三条棱长分别是a,b,c,则这个长方体的外接球的半径是________.5.如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是________.探究点一 空间几何体的结构例1 给出下列命题:①棱柱的侧棱都相

6、等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.其中正确命题的序号是________.变式迁移1 下列结论正确的是________(填序号).①各个面都是三角形的几何体是三棱锥;②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;③棱锥的侧棱长与底面多边形

7、的边长相等,则此棱锥可能是六棱锥;④圆锥的顶点与底面圆周上的任意一点的连线都是母线.探究点二 空间几何体的直观图例2 一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于________.变式迁移2 等腰梯形ABCD,上底CD=1,腰AD=CB=,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.探究点三 简单组合体的有关计算例3 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图

8、中三角形(正四面体的截面)的面积.变式迁移3如图,一个正方体内接于高为40cm,底面半径为30cm的圆锥,则正方体的棱长是________cm.1.熟练掌握几何体的结构特征与对应直观图之间的相互转化,正确地识别和画出空间几何体的直观图是解决空间几何体问题的基础和保证.2.棱柱的分类(按侧棱与底面的位置关系):棱柱3.正棱锥问题常归结到它的高、侧棱、斜高、底面正多边形、内切圆半径、外接圆半径、底面边长的一半构成的直角三角形中解决.4.圆柱、圆锥、圆台、球应抓住它们是旋转体这一特点,弄清旋转轴、旋转

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。