人版A版高中数学必修1课后习题与答案三章全

人版A版高中数学必修1课后习题与答案三章全

ID:47705173

大小:1.82 MB

页数:36页

时间:2019-10-21

人版A版高中数学必修1课后习题与答案三章全_第1页
人版A版高中数学必修1课后习题与答案三章全_第2页
人版A版高中数学必修1课后习题与答案三章全_第3页
人版A版高中数学必修1课后习题与答案三章全_第4页
人版A版高中数学必修1课后习题与答案三章全_第5页
人版A版高中数学必修1课后习题与答案三章全_第6页
人版A版高中数学必修1课后习题与答案三章全_第7页
人版A版高中数学必修1课后习题与答案三章全_第8页
人版A版高中数学必修1课后习题与答案三章全_第9页
人版A版高中数学必修1课后习题与答案三章全_第10页
资源描述:

《人版A版高中数学必修1课后习题与答案三章全》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、........高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国,美国,印度,英国;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2).(3).(4),.2.解:(1)因为方程的实数根为,所以由方程的所有实数根组成的集合为;(2)因为小于的素数为,所以由小于的所有素数组成的集合为;(3)由,得,即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为;(4)由,得,所以不等式的解集为.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得;取

2、一个元素,得;取两个元素,得;取三个元素,得,即集合的所有子集为.参考.资料........2.(1)是集合中的一个元素;(2);(3)方程无实数根,;(4)(或)是自然数集合的子集,也是真子集;(5)(或);(6)方程两根为.3.解:(1)因为,所以;(2)当时,;当时,,即是的真子集,;(3)因为与的最小公倍数是,所以.1.1.3集合的基本运算练习(第11页)1.解:,.2.解:方程的两根为,方程的两根为,得,即.3.解:,.4.解:显然,,则,.1.1集合习题1.1(第11页)A组1.(1)是有理数;(2)是个自然数;参考.资料........(3

3、)是个无理数,不是有理数;(4)是实数;(5)是个整数;(6)是个自然数.2.(1);(2);(3).当时,;当时,;3.解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求.4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为;(2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为.5.(1);;;;,即;(2);;;=;;(3);菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三

4、角形.6.解:,即,得,则,.7.解:,则,,而,,则,参考.资料.........8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为.(1);(2).9.解:同时满足菱形和矩形特征的是正方形,即,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即,.10.解:,,,,得,,,.B组1.集合满足,则,即集合是集合的子集,得个子集.2.解:集合表示两条直线的交点的集合,即,点显然在直线上,得.3.解:显然有集合,当时,集合,则;当时,集合,则;当时,集合,则;参考.资料........当,且,且时,集合,则.

5、4.解:显然,由,得,即,而,得,而,即.第一章集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2)要使原式有意义,则,即,得该函数的定义域为.2.解:(1)由,得,同理得,则,即;(2)由,得,同理得,则,即.3.解:(1)不相等,因为定义域不同,时间;参考.资料........(2)不相等,因为定义域不同,.1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为,,且,即.2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象

6、(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:,图象如下所示.4.解:因为,所以与中元素相对应的中的元素是;因为,所以与中的元素相对应的中元素是.1.2函数及其表示习题1.2(第23页)1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2),都有意义,即该函数的定义域为;(3)要使原式有意义,则,即且,得该函数的定义域为;参考.资料........(4)要使原式有意义,则,即且,得该函数

7、的定义域为.2.解:(1)的定义域为,而的定义域为,即两函数的定义域不同,得函数与不相等;(2)的定义域为,而的定义域为,即两函数的定义域不同,得函数与不相等;(3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等.3.解:(1)定义域是,值域是;(2)定义域是,值域是;参考.资料........(3)定义域是,值域是;(4)定义域是,值域是.4.解:因为,所以,即;同理,,即;,即;,即.5.解:(1)当时,,参考.资料........即点不在的图象上;(2)当时,,即当时,求的值为;(3),得,即.6.解:由,得是方程的两个实

8、数根,即,得,即,得,即的值为.7.图象如下:8.解:由矩形的面积为,即,得,,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。