二次函数与一元二次方程的联系.4 二次函数与一元二次方程的联系

二次函数与一元二次方程的联系.4 二次函数与一元二次方程的联系

ID:47576578

大小:143.00 KB

页数:3页

时间:2019-09-20

二次函数与一元二次方程的联系.4 二次函数与一元二次方程的联系_第1页
二次函数与一元二次方程的联系.4 二次函数与一元二次方程的联系_第2页
二次函数与一元二次方程的联系.4 二次函数与一元二次方程的联系_第3页
资源描述:

《二次函数与一元二次方程的联系.4 二次函数与一元二次方程的联系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y=x2-6x+c的图象时,发现其顶点在x轴上,请你帮小唐确定字母c的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】二次函数图象与x轴交点情况的判断下列函数的图象与x轴只有一个交点的是(  )A.y=x2+2x-3B.y=x2+2x+3C.y=x2-2x+3D.y=x2-2x+1解析:选项A中b2-4

2、ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点.故选D.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型二】利用函数图象与x轴交点情况确定字母的取值范围(2015·武汉模拟)二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(  )A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0解析:∵二次函数y=kx2-6x+3的图象与x轴有

3、交点,∴方程kx2-6x+3=0(k≠0)有实数根,即Δ=36-12k≥0,k≤3.由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x轴没有交点.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】利用抛物线与x轴交点坐标确定一元二次方程的解(2015·苏州中考)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=

4、5的解为(  )A.B.C.D.解析:∵对称轴是经过点(2,0)且平行于y轴的直线,∴-=2,解得b=-4.解方程x2-4x=5,解得x1=-1,x2=5.故选D.方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x2+2x-3=-8的实数根(精确到0.1).解析:对于y=-x2+2x-3,当函数值为-8时,对应点的横坐标即为一元二次方程-x2+2x-3=-8的实数根,故可通

5、过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y=-x2+2x-3的图象,如图.由图象可知方程-x2+2x-3=-8的根是抛物线y=-x2+2x-3与直线y=-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:x-1.1-1.2-1.3-1.4-1.5y-6.41-6.84-7.29-7.76-8.25  因此x≈-1.4是方程的一个实数根.(2)另一个根可以类似地求出:x3.13.23.33.43.5y-6.41-6.84-7.29-7.76-

6、8.25  x≈3.4是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y=h的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如

7、图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x=1时函数y的值与最大摸高3.1米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系

8、式为y=a(x-h)2+k,将点A、B的坐标代入,可得y=-(x-4)2+4.将点C的坐标代入上式,得左边=3,右边=-(7-4)2+4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。