初二四边形综合提高练习题(附详细讲解)

初二四边形综合提高练习题(附详细讲解)

ID:47551993

大小:205.50 KB

页数:12页

时间:2020-01-14

初二四边形综合提高练习题(附详细讲解)_第1页
初二四边形综合提高练习题(附详细讲解)_第2页
初二四边形综合提高练习题(附详细讲解)_第3页
初二四边形综合提高练习题(附详细讲解)_第4页
初二四边形综合提高练习题(附详细讲解)_第5页
资源描述:

《初二四边形综合提高练习题(附详细讲解)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、......初二四边形综合提高练习题(附详解)1.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求AB,AC的长;(2)求证:AE=DF;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值

2、时,△DEF为直角三角形?请说明理由.2.如图,已知菱形ABCD的对角线AC、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=,求菱形ABCD的面积.3.在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.参考材料......4.如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA

3、的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.5.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A1B1C1O的一个顶点,如果这两个正方形全等,正方形A1B1C1O绕点O旋转.(1)求两个正方形重叠部分的面积;(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.6.在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿

4、CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥参考材料......BC于点F,连接DE,EF.(备注:在直角三角形中30度角所对的边是斜边的一半)(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.7.如图1,四边形ABCD是正方形,点E是边

5、BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.(1)求证:AE=EF.(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”其余条件不变,那么结论AE=EF是否成立呢?若成立,请你证明这一结论,若不成立,请你说明理由.参考材料......8.已知□OABC的顶点A、C分别在直线x=2和x=4上,O为坐标原点,直线x=2分别与x轴和OC边交于D、E,直线x=4分别与x轴和AB边的交于点F、G.(1)如图,在点A、C移动的过程中,若点B在x轴上,①直线AC是否会经过一个

6、定点,若是,请直接写出定点的坐标;若否,请说明理由.②□OABC是否可以形成矩形?如果可以,请求出矩形OABC的面积;若否,请说明理由.③四边形AECG是否可以形成菱形?如果可以,请求出菱形AECG的面积;若否,请说明理由.(2)在点A、C移动的过程中,若点B不在x轴上,且当□OABC为正方形时,直接写出点C的坐标.9.如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当

7、t为何值时,△PAE为直角三角形?参考材料......(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.参考材料......参考答案1.(1)AB=5,AC=10.(2)证明见解析;(3)能,当t=时,四边形AEFD为菱形.(4)当t=秒或4秒时,△DEF为直角三角形.【解析】(1)设AB=x,则AC=2x.由勾股定理得,(2x)2-x2=(5)2,得x=5,故AB=5,AC=10.(2)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵

8、AE=t,∴AE=DF.(3)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵AB=5,∴AC=10.∴AD=AC-DC=10-2t.若使□AEFD为菱形,则需AE=AD,即t=10-2t,t=.即当t=时,四边形AEFD为菱形.(4)①∠EDF=90°时,10-2t=2t,t=.②∠DEF=90°时,10-2t=t,t=4.③∠EFD=90°时,此种情况不存在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。