欢迎来到天天文库
浏览记录
ID:47531213
大小:266.00 KB
页数:18页
时间:2020-01-13
《青岛中考探究题型大全》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、......《探究题》青岛中考真题23.(10分)(2014•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第
2、n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;参考材料......第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:
3、+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式: _________ ,所以,+++…+= _________ .参考材料......拓广应用:计算+++…+.23.(10分)(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.这种利
4、用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.【研究速算】提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:参考材料......用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形
5、面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) _________ .【研究方程】提出问题:怎样图解一元二次方程x2+2x﹣35=0(x>0)?几何建模:(1)变形:x(x+2)=35.(2)画四个长为x+2,宽为x的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的
6、表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x(x+2)+22∵x(x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x>0∴x=5参考材料......归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)
7、?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5归纳提炼:当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画
8、图并注明相关线段的长)参考材料...... 参考材料......23.(10分)(2012•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点
此文档下载收益归作者所有