欢迎来到天天文库
浏览记录
ID:47489540
大小:662.22 KB
页数:21页
时间:2020-01-12
《初三数学期中必背考点清单》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初三数学期中必背考点清单二次函数知识点:1.定义:一般地,如果是常数,,那么叫做的二次函数.2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.①时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.6.抛物线的五要素:开口方向、对称轴、顶点、与x轴交点、与y轴交点.①决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同;越大,开口越小。②
2、平行于轴(或重合)的直线记作.特别地,轴记作直线.③求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方法将抛物线的解析式化为的形式,得到顶点为(,),对称轴是.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.④抛物线与x轴有无交点的判定情况⑴b2-4ac>0与x轴有两个不同的交点⑵b2-4ac=0与x轴只有一个交点⑶b2-4ac<0与x轴没有交点⑤抛物线与y轴的交点()★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★9.抛物线中,的作用
3、(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(左同右异)(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()11.用待定系数法求
4、二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.12.直线与抛物线的交点(1)与轴平行的直线与抛物线有且只有一个交点(,).(2)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(3)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点;②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.
5、(4)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故13.二次函数与一元二次方程的关系:(1)一元二次方程就是二次函数当函数y的值为0时的情况.(2)二次函数的图象与轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数的图象与轴有交点时,交点的横坐标就是当时自变量的值,即一元二次方程的根.(3)当二次函数的图象与轴有两个交点时,则一元二次方程有两个不相等的实数根;当二次函数的图象与轴有一个交点时,则一元二次方程有两个相等的实数根;当二次函数的图象与轴没有交点时,则一元二次方程没有实数根14、二次函数图象的对称二次函数图象的对称一般有五种情况,可
6、以用一般式或顶点式表达1.关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2.关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3.关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4.关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5.关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(
7、或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.15.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间
此文档下载收益归作者所有