上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷

上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷

ID:47443601

大小:1.07 MB

页数:11页

时间:2019-08-30

上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷_第1页
上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷_第2页
上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷_第3页
上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷_第4页
上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷_第5页
资源描述:

《上海市普陀区2008学年度第一学期高三年级质量调研数学(理科)试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2008学年度第一学期上海市普陀区高三年级质量调研数学试卷(理科)2008.12说明:本试卷满分150分,考试时间120分钟。本套试卷另附答题纸,每道题的解答必须写在答题纸的相应位置,本卷上任何解答都不作评分依据。一、填空题(本大题满分55分)本大题共有11小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得5分,填错或不填在正确的位置一律得零分.1.已知集合,集合,则.2.抛物线的焦点坐标为.3.已知函数,则.4.设定义在上的函数满足,若,则.第7题图5.已知两直线方程分别为、,若,则直

2、线的一个法向量为.6.已知,且为钝角,则.7.在的二面角内放一个半径为的球,使球与两个半平面各只有一个公共点(其过球心且垂直于二面角的棱的直截面如图所示),则这两个公共点AB之间的球面距离为.8.设等差数列的前n项和为.若,且,则正整数.第9题9.一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为cm.(精确到0.1cm)10.已知函数,若,则实数的取值范

3、围是.11.下列有关平面向量分解定理的四个命题中,所有正确命题的序号是.(填写命题所对应的序号即可)①一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;②一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;11③平面向量的基向量可能互相垂直;④一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中.每题选对得4分,不选、选错或选出的代号超

4、过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分.12.对任意的实数、,下列等式恒成立的是()A.;B.;C.;D..13.若平面向量和互相平行,其中.则()A.或0;B.;C.2或;D.或.14.设、为两条直线,、为两个平面.下列四个命题中,正确的命题是(  )A.若、与所成的角相等,则;B.若;C.若,则;D.若,,则.15.若不等式成立的一个充分非必要条件是,则实数的取值范围是()A.;B.;C.;D.以上结论都不对.三、解答题(本大题满分79分)本大题共有6题,解

5、答下列各题必须在答题纸规定的方框内写出必要的步骤.16.(本题满分12分)设点在椭圆的长轴上,点是椭圆上任意一点.当的模最小时,点恰好落在椭圆的右顶点,求实数的取值范围.1117.(本题满分14分,第1小题6分,第2小题8分)已知关于的不等式,其中.(1)当变化时,试求不等式的解集;(2)对于不等式的解集,若满足(其中为整数集).试探究集合能否为有限集?若能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.第18题图18.(本题满分15分,第1小题7分,第2小题8分

6、)如图,在直三棱柱中,,,是的中点,是的中点.(1)求异面直线与所成角的大小;(2)若直三棱柱的体积为,求四棱锥的体积.19.(本题满分16分,第1小题10分,第2小题6分)在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数可近似地用函数来刻画.其中:正整数表示月份且,例如时表示1月份;和是正整数;.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:①各年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区

7、从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;③2月份该地区从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多.(1)试根据已知信息,确定一个符合条件的的表达式;(2)一般地,当该地区从事旅游服务工作的人数超过400人时,该地区也进入了一年中的旅游“旺季”.那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20.(本题满分22分,第1小题4分,第2小题6分,第3小题12分)11定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数

8、列.已知无穷等比数列的首项、公比均为.(1)试求无穷等比子数列()各项的和;(2)是否存在数列的一个无穷等比子数列,使得它各项的和为?若存在,求出所有满足条件的子数列的通项公式;若不存在,请说明理由;(3)试设计一个数学问题,研究:是否存在数列的两个(或两个以上)无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.【第3小题说明:本小题将根据你所设计的问题的质量分层评分;问题的表达形式可以参考第2小题的表述方法.】1108学年度第一学期高三质量

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。