欢迎来到天天文库
浏览记录
ID:47390023
大小:1.31 MB
页数:29页
时间:2019-07-11
《边缘计算参考架构0》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、边缘计算参考架构2.0边缘计算产业联盟工业互联网产业联盟联合发布2017年11月29目录目录2一、迎接行业智能时代3(一)行业智能时代已来3(二)行业智能2.0面临的挑战4(三)边缘计算使能行业智能2.05(四)边缘计算产业化当前进展6二、边缘计算6(一)边缘计算概念7(二)基本特点和属性7(三)边缘计算CROSS价值7(四)边缘计算与云计算协同8三、边缘计算参考架构8(一)模型驱动的参考架构8(二)多视图呈现9(三)概念视图101、边缘计算节点、开发框架与产品实现102、边缘计算领域模型11(四)功能设计视图121、ECN122、业务Fab
2、ric163、联接计算Fabric164、开发服务框架(智能服务)185、部署运营服务框架(智能服务)196、管理服务207、数据全生命周期服务208、安全服务21(五)部署视图23四、ECC产业发展与商业实践24(一)ECC产业发展总体概况241、ECC产业组织合作242、ECC标准组织合作24(二)边缘计算的商业实践251、从理论到实践252、从水平到垂直253、从需求到实践,从实践到需求2929一、迎接行业智能时代(一)行业智能时代已来全球已经掀起行业数字化转型的浪潮,数字化是基础,网络化是支撑,智能化是目标。通过对人、物、环境、过程等
3、对象进行数字化产生数据,通过网络化实现数据的价值流动,以数据为生产要素,通过智能化为各行业创造经济和社会价值。智能化是以数据的智能分析为基础,从而实现智能决策和智能操作,并通过闭环实现业务流程的持续智能优化。以大数据、机器学习、深度学习为代表的智能技术已经在语音识别、图像识别、用户画像等方面得到应用,在算法、模型、架构等方面取得了较大的进展。智能技术已经率先在制造、电力、交通、医疗、农业等行业开始应用,对智能技术提出了新的需求与挑战。行业智能时代已经来临。行业智能分为1.0和2.0两个发展阶段:1)行业智能1.0行业智能1.0是面向市场线索、
4、营销、采购、物流、售后等商业过程,将用户、应用和商业流程的行为和状态数字化,基于多维度数据分析和场景感知,建立行业的信息图谱,为行业用户提供个性化的资源配置和服务。行业智能1.0的快速发展得到了ICT创新技术的支撑,包括:l泛在网络联接使能数据的快速流动;l云计算按需提供低成本的基础设施服务应对业务负载变化;l大数据挖掘、分析和管理海量数据,提升企业的商业决策能力;l算法+数据+算力,释放了行业智能的潜在价值。2)行业智能2.0面向产品规划、设计、制造、运营等生产过程,产品、生产装备、工艺流程等已经逐步数字化和网络化,行业智能2.0已经具备了
5、基础条件。这里所指的产品、装备具有广义的概念,既包括制造业所生产的产品和制造产线等,也包括能源、交通、农业、公共事业等行业提供服务时所依赖的资产,如电表、交通工具、农业机械、环境监测仪器等。行业智能2.0需要达成如下目标:l提升生产与服务过程敏捷性和协作性l提升资源共享和减少能耗l降低生产运行和运营不确定性l与行业智能1.0协作,建立生产、销售和服务的端到端行业智能。行业智能2.0时代需要行业发生四个关键转变:29l物理世界与数字世界从割裂转变为协作融合;l运营决策从模糊的经验化转变为基于数字化、模型化的科学化;l流程从割裂转变基于数据的全流
6、程协同;l从企业单边创新转变为基于产业生态的多边开放创新。(二)行业智能2.0面临的挑战从DIKW模型视角看,行业智能2.0面临了四大挑战:lOT和ICT跨界协作挑战OT(OperationTechnology)与ICT(InformationandCommunicationTechnology)关注重点不同,OT关注物理和商业约束、人身安全,ICT关注商业约束、信息安全;OT与ICT在行业语言、知识背景、文化背景存在较大差异,相互理解困难;OT技术体系碎片化、专用化与标准化、开放性的ICT技术体系集成协作存在挑战困难;OT与ICT的融合协作
7、也将带来安全方面的挑战。OT与ICT的跨界协作需要建立物理世界和数字世界的联接与融合。l信息难以有效流动与集成目前业界有超过6种以上的工业实时以太网技术,超过40种工业总线,缺少统一的信息与服务定义模型。烟囱化的系统导致数据孤岛,使信息难以有效流动与交互。信息有效流动与集成是支持数据创新、服务创新的基础,需要建立数据全生命周期管理。l知识模型化是巨大挑战知识模型(KnowledgeModel)主要解决知识的表示、组织与交互关系,知识的有序化以及知识处理模型,是将知识进行形式化和结构化的抽象。知识模型不是知识,是知识的抽象,以便于计算机理解与处
8、理。知识模型输入存在信息不完整、不准确和不充分的挑战;知识模型处理的算法与建模还需持续改进与优化;知识模型输出的应用场景有限需要持续积累。知识模型化是高效、低成本实
此文档下载收益归作者所有