考研高等数学大纲_免费下载

考研高等数学大纲_免费下载

ID:47379031

大小:61.00 KB

页数:7页

时间:2019-09-07

考研高等数学大纲_免费下载_第1页
考研高等数学大纲_免费下载_第2页
考研高等数学大纲_免费下载_第3页
考研高等数学大纲_免费下载_第4页
考研高等数学大纲_免费下载_第5页
资源描述:

《考研高等数学大纲_免费下载》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、-高等数学部分(占78%,线性代数占22%)章节2012大纲2013大纲变化情况及复习指南一、函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。考试要求1理解函数的概念,掌握函数的表示法,并会建立应用问题的

2、函数关系。2.了解函数的有界性、单调性、周期性和奇偶性。3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4.  掌握基本初等函数的性质及其图形,了解初等函数的概念。5.  理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。6.  掌握极限的性质及四则运算法则。考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,

3、极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。考试要求1理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。2了解函数的有界性、单调性、周期性和奇偶性。3理解复合函数及分段函数的概念,了解反函数及隐函数的概念。无变化重点复习:极限的定义及性质、极限存在的两个准则、两个重要极限、各种类型函数极限的求法、无穷小量、函数间断点、连续函数的性质等本章基础内容较多,复习要扎实、稳步进行,以保证后面各章节的顺利复习。7.  掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。8. 

4、 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。9.  理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。4掌握基本初等函数的性质及其图形,了解初等函数的概念。5理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。6掌握极限的性质及四则运算法则。7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等

5、价无穷小量求极限。9理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学 考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’考试内容无变化重点复习:  导数的定义、函数可导性与连续性的关系、各类函数的求导法、微分中值定理、

6、洛必达法则、函数性态等Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求1.  理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。2.  掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。3.  了解高阶导数的概念,会求简单函数的高阶导数。4.  会求分段函数的导数,

7、会求隐函数和由参数方程所确定的函数以及反函数的导数。5.  理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。6.  掌握用洛必达法则求未定式极限的方法。7.  理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。8.  导数和微分的概念,导数的几何意义和物理意义,函数的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。