欢迎来到天天文库
浏览记录
ID:47334998
大小:686.47 KB
页数:10页
时间:2019-08-14
《必修二与必修五数学试题和答案解析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1..若函数是定义域为的减函数,则函数的图象大致是()2.已知数列{an}满足an+3an+1+3=12,且a1=1,则a5=()。A.-52B.125C.61D.-2383.如图所示,圆锥的底面半径为,母线长为,在圆锥上方嵌入一个半径为的球,使圆锥的母线与球面相切,切点为圆锥母线的端点,则该球的表面积为()第3题图A.B.C.D.4.已知正三棱柱中,,则异面直线与所成角的余弦值为()A.B.C.D.5.已知函数,若函数有两个零点,则实数的取值范围为()A.B.C.D.6.在等差
2、数列{an}中,a5=33,公差d=3,则201是该数列的第( )项.A.60B.61C.62D.637.在△ABC中,∠A=60°,AB=2,且△ABC的面积为32,则BC的长为( )A.3B.3C.7D.78.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC...是( )A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形9.用篱笆围一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是( )A.30B.36C.40D.5010.已知圆截直线所得线段的长度是,则圆与圆的的位置关系是()
3、A.内切B.相交C.外切D.相离11.在平面直角坐标系中,为坐标原点,直线与圆相交于A、B两点,.若点在圆上,则实数()A.B.C.0D.112.点M在上,则点到直线的最短距离为()A.9B.8C.5D.2二、填空题:本大题共4小题,每小题5分,共20分。13.若Sn等差数列{an}的前n项和,且a3=2,a8=10,则S10= .14.设a>0,b>0,若3是3a与3b的等比中项,则1a+1b的最小值是 .15.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为 .16.如图
4、,长方体中,,,点,,分别是,,的中点,则异面直线与所成的角是.三、简答题:17.已知直线.(1)若,求实数a的值;(2)当时,求直线与之间的距离....18.(本小题满分12分)已知单调递增等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)数列{bn}为等差数列,其前n项和Sn=n2,求数列{an+bn}的前n项和Tn.19.(12分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值....20.(本小题满分12分)第20题图在四棱锥中,底面是梯形,∥,,,,为中点
5、.(1)在棱上确定一点,使得∥平面;(2)若,求三棱锥的体积.21.(本小题满分12分)在数列{an}中,a1=1,an﹣1=2an.(1)求数列{an}的通项公式;(2)若bn=(2n+1)an,求数列{bn}的前n项和Tn.22.(本题满分12分)已知Sn是等差数列{an}的前n项和,且a2=2,S6=21(1)求数列{an}的通项公式;(2)令bn=1(n+1)an,求数列{bn}的前n项和Tn....答案:1.B;2.C;3.D;4.D;5.B;6.B;7.A;8.B;9.C;10.B;11.C;12.D13.60;14.4;15.3;16.90°3.解法一:在Rt
6、△ABC中,sin∠BAC=12,∴∠BAC=30°,∴tan30°=OB2,解得OB=233。解法二:由△OBC∽△OAB得OBOA=BCAB,解得OB2=43,所以表面积S=163π。4解:延长A′B′到D,使B′D=AB,则四边形AB′DB是平行四边形∴AB′∥BD∴∠DBC′就是异面直线AB′与B′所成的角由余弦定理得CD=23由勾股定理得BD=BC’=22∴cos∠DBC‘=(22)2+(22)2-(23)22×22×22=14。...8.解法一:由已知易求出∠B=60°,∵a、b、c成等比数列∴b2=ac由b2=a2+c2-2ac∙cosB得ac=a2+c2-2
7、bc∙12∴a=c。解法二:由已知易求出∠B=60°,设公比为q,则b=aq,c=aq2,由余弦定理即可算出q=1,所以是等边三角形。11.利用菱形的性质易求出圆心到直线的距离为1,然后利用点到直线的距离公式即可求出k=0。15.解:由已知把角换成边得2+ba-b=c-bc,整理得b2+c2-4=bc∴cosA=b2+c2-a22bc=12,A=π3,∵4=b2+c2-bc≥2bc-bc,∴bc≤4∴S∆abc=12bc∙sinA≤12×4×32=3。16.解:连接B1G、B1F,分别计算B1G=2、B1F=5、F
此文档下载收益归作者所有