欢迎来到天天文库
浏览记录
ID:47231088
大小:443.50 KB
页数:24页
时间:2019-07-14
《TOPSIS分析方法研究方案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、TOPSIS分析方法研究摘要本文主要介绍了TOPSIS分析方法理论及其主要思想,运用数学理论,对其算法进行了详细的分析,并指出原始方法存在的优缺点;在此基础上提出了一种改进的TOPSIS分析方法,给出具体求权重的方法,突出其客观公正性.本文还分析了TOPSIS方法逆序产生的原因及其改进的方法,突出其实用性,推广其应用范围.关键词TOPSIS法;改进的TOPSIS;权重;逆序TOPSISANALYSISMETHODABSTRACTThispaperdescribesamethodoftheory—TOPSIS,anditsmai
2、nidea.Usingmathematicaltheory,itsalgorithmforadetailedanalysisandnotedtheadvantagesanddisadvantagesoftheoriginalmethods.Onthisbase,animprovedTOPSISmethodisgiven,andspecificforweight,inordertohighlightitsobjectiveimpartiality.ThepaperalsoanalyzesthecausesofTOPSISReve
3、rseanditsimprovedmethods,highlightitspracticalityandthepromotionofitsuse.KeywordsTOPSISmethod;ImprovedTOPSIS;weight;Reverse目录中文摘要....................................................………………………………………………….Ⅰ英文摘要....................................................……………………
4、…………………………….Ⅱ引言.......................................................……………………………………………………...11一般TOPSIS分析方法1.1TOPSIS分析方法概念................................………………………………21.2TOPSIS分析方法的一般解题步骤........................………………………21.3应用实例...................…………………………………………………
5、…..42改进的TOPSIS法2.1一般TOPSIS解法的缺点……………….......................................……………52.2改进的TOPSIS法...……………………………………………………………….52.2.1统一指标,确定理想解…………………………………………………..52.2.2指标权重的确定……………………………………………………….…..62.2.3各方案优劣排序…………………………………………………………...72.3实例分析…………………………………………………………
6、………………….73.关于TOPSIS法的逆序问题……………………………………………………………93.1逆序产生的原因…………………………………………………………………..93.1.1由于增加新的方案产生逆序................…………………………………93.1.2由于指标权重改变原始数据结构产生逆序........……………………103.2逆序消除的方法……………………………………………………………….….11结论………………………………………………………………………………………….....13参考文献.....
7、.............................................……………………………………………………..13致谢......................................................………………………………………………………...14引言TOPSIS的全称是“逼近于理想值的排序方法”(TechniqueforOrderPreferencebvSimilaritytoIdealSolution),是Hwang和Yoon于1981年提出的一种适用于根据多项指标、对
8、多个方案进行比较选择的分析方法.这种方法的中心思想在于首先确定各项指标的正理想值和负理想值,所谓正理想解是一设想的最好值(方案),它的各个属性值都达到各候选方案中最好的值,而负理想解是另一设想的最坏值(方案),然后求出各个方案与理想值、负理想值之间的加权欧氏距离,由此得出各方
此文档下载收益归作者所有