欢迎来到天天文库
浏览记录
ID:47197210
大小:505.00 KB
页数:10页
时间:2019-08-21
《高等数学知识在物理学中应用举例》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、《高等数学》知识在物理学中的应用举例一导数与微分的应用分析利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。例1如图,曲柄以均匀角速度饶定点转动.此曲柄借连杆使滑块沿直线运动.求连杆上点的轨道方程及速度.设解1)如图,点的坐标为:,(1)(2)由三角形的正弦定理,有B故得(3)由(1)得(4)由得化简整理,得点的轨道方程为:2)要求点的速度,首先对(1),(2)分别求
2、导,得其中10又因为对该式两边分别求导,得所以点的速度例2若一矿山升降机作加速度运动时,其加速度为式中及为常数,已知升降机的初速度为零,试求运动开始秒后升降机的速度及其所走过的路程.解:由题设及加速度的微分形式,有对等式两边同时积分得:其中为常数.由初始条件:得于是又因为得对等式两边同时积分,可得:10例3宽度为的河流,其流速与到河岸的距离成正比。在河岸处,水流速度为零,在河流中心处,其值为一小船以相对速度沿垂直于水流的方向行驶,求船的轨迹以及船在对岸靠拢的地点。解以一岸边为轴,垂直岸的方向为轴,如图建立坐标系。所以水流速度为由河流中心
3、处水流速度为,故,所以.当时,,即(1)得.两边积分,有,(2)由(1)-(2),得.(3)同理,当时,,即,,(4)10其中为一常数。由(3)知,当时,,代入(4),得,于是.所以船的轨迹为船在对岸的靠拢地点,即时有例4将质量为的质点竖直抛上于有阻力的媒质中。设阻力与速度平方成正比,即如上掷时的速度为,试证此质点又落至投掷点时的速度为解:质点从抛出到落回抛出点分为上升和下降两阶段。取向上的力为正,如图,两个过程的运动方程为:上升:。。下降:上升时下降时对上升的阶段:,即于是.两边积分,得质点到达的高度.(1)对下降的阶段:即得,得.(
4、2)由(1)=(2)得10二积分的应用分析利用积分的概念与运算,可解决一些关于某个区域累积量的求解问题。求物体的转动惯量、求电场强度等问题都是典型的求关于某个区域累积量的问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量,在哪个区域上进行累积。并应充分利用区域的对称性,这样可将复杂的积分问题简化,降低积分的重数,较简捷地解决具体问题。例5一半径为的非均质圆球,在距中心处的密度为:式中和都是常数。试求此圆球饶直径转动时的回转半径。解:设表示距球心为的一薄球壳的质量,则,所以此球对球心的转动惯量为(1)在对称球中,饶直径转动时
5、的转动惯量为,(2)又因球的质量为(3)又饶直径的回转半径(4)由(1)-(4),得例6试证明立方体饶其对角线转动时的回转半径为,式中为对角线的长度。解:建立坐标系,设为立方体的中心,轴分别与立方体的边平行。由对称性知,轴即立方体中心惯量的主轴。设立方体的边长为10由以上所设,平行于轴的一小方条的体积为,于是立方体饶的转动惯量为根据对称性得:易知立方体的对角线与轴的夹角都为且故立方体饶对角线的转动惯量为(1)又由于,(2)饶其对角线转动时的回转半径为(3)由(1)-(3)得例7一个塑料圆盘,半径为电荷均匀分布于表面,圆盘饶通过圆心垂直盘
6、面的轴转动,角速度为,求圆盘中心处的磁感应强度。解:电荷运动形成电流,带电圆盘饶中心轴转动,相当于不同半径的圆形电流。圆盘每秒转动次数为,圆盘表面上所带的电荷面密度为,在圆盘上取一半径为,宽度为的细圆环,它所带的电量为,圆盘转动时,与细圆环相当的圆环电流的电流强度为,它在轴线上距盘心处的点所产生的磁感应强度为10故点处的总磁感应强度为变换积分所以,的方向与方向相同()或(.于是在圆盘中心处,磁感应强度例8雨滴下落时,其质量的增加率与雨滴的表面积成正比,求雨滴速度与时间的关系。解:设雨滴的本体为由物理学知(1)1)在处理这类问题时,常常将
7、模型的几何形状理想化。对于雨滴,我们常将它看成球形,设其半径为则雨滴质量是与半径的三次方成正比,密度看成是不变的,于是,(2)其中为常数。2)由题设知,雨滴质量的增加率与其表面积成正比,即(3)其中为常数。由(2),得(4)由(3)=(4),得(5)10对(5)两边积分:得(6)将(6)代入(2),得(7)3)以雨滴下降的方向为正,分析(1)式(8)(为常数)当时,,故三曲线、曲面积分的应用分析曲线、曲面积分的概念与运算在物理学中应用非常广泛,灵活应用曲线、曲面积分,往往能使问题得到简化。在求磁感应强度、磁通量这类问题时,高斯公式往往是
8、有效的。例9设力其中验证为保守力,并求出其势能。解:为验证是否为保守力,将题设中力的表达式代入,得于是是保守力。故其势能为10例10一个半径为的球体内,分布着电荷体密度式中是径向距离,是常量。求空间的场强分
此文档下载收益归作者所有