中考数学二次函数动点问题-因动点产生的平行四边形问题

中考数学二次函数动点问题-因动点产生的平行四边形问题

ID:47190456

大小:501.50 KB

页数:14页

时间:2019-08-18

中考数学二次函数动点问题-因动点产生的平行四边形问题_第1页
中考数学二次函数动点问题-因动点产生的平行四边形问题_第2页
中考数学二次函数动点问题-因动点产生的平行四边形问题_第3页
中考数学二次函数动点问题-因动点产生的平行四边形问题_第4页
中考数学二次函数动点问题-因动点产生的平行四边形问题_第5页
资源描述:

《中考数学二次函数动点问题-因动点产生的平行四边形问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、因动点产生的平行四边形问题例12013年上海市松江区中考模拟第24题如图1,已知抛物线y=-x2+bx+c经过A(0,1)、B(4,3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.图1动感体验请打开几何画板文件名“13松江24”,拖动点N在直线AB上运动,可以体验到,以M、N、C、B为顶点的平行四边形有4个,符合MN在抛物线的对称轴的左侧的平行四边形MNCB只有一个

2、.请打开超级画板文件名“13松江24”,拖动点N在直线AB上运动,可以体验到,MN有4次机会等于3,这说明以M、N、C、B为顶点的平行四边形有4个,而符合MN在抛物线的对称轴的左侧的平行四边形MNCB只有一个.思路点拨1.第(2)题求∠ABO的正切值,要构造包含锐角∠ABO的角直角三角形.2.第(3)题解方程MN=yM-yN=BC,并且检验x的值是否在对称轴左侧.满分解答(1)将A(0,1)、B(4,3)分别代入y=-x2+bx+c,得解得,c=1.所以抛物线的解析式是.(2)在Rt△BOC中,OC=4,BC=3,所以OB

3、=5.如图2,过点A作AH⊥OB,垂足为H.在Rt△AOH中,OA=1,,所以.图2所以,.在Rt△ABH中,.(3)直线AB的解析式为.设点M的坐标为,点N的坐标为,那么.当四边形MNCB是平行四边形时,MN=BC=3.解方程-x2+4x=3,得x=1或x=3.因为x=3在对称轴的右侧(如图4),所以符合题意的点M的坐标为(如图3).图3图4考点伸展第(3)题如果改为:点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果M、N、B、C为顶点的四边形是平行四边形,求点M的坐标.那么求点M的坐标要考虑两种情况:MN

4、=yM-yN或MN=yN-yM.由yN-yM=4x-x2,解方程x2-4x=3,得(如图5).所以符合题意的点M有4个:,,,.图5例22012年福州市中考第21题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示

5、:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,PQ的中点M的运动路径是一条线段.拖动右图中的点Q运动,可以体验到,当PQ//AB时,四边形PDBQ为菱形.请打开超级画板文件名“12福州21”,拖动点

6、Q向上运动,可以体验到,PQ的中点M的运动路径是一条线段.点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ//AB时,四边形PDBQ为菱形.点击动画按钮的中部,Q的速度变成1.思路点拨1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.满分解答(1)QB=8-2t,PD=.(2)如图3,作∠ABC的平分线交CA于P,过点P作

7、PQ//AB交BC于Q,那么四边形PDBQ是菱形.过点P作PE⊥AB,垂足为E,那么BE=BC=8.在Rt△ABC中,AC=6,BC=8,所以AB=10.图3在Rt△APE中,,所以. 当PQ//AB时,,即.解得.所以点Q的运动速度为.(3)以C为原点建立直角坐标系.如图4,当t=0时,PQ的中点就是AC的中点E(3,0).如图5,当t=4时,PQ的中点就是PB的中点F(1,4).直线EF的解析式是y=-2x+6.如图6,PQ的中点M的坐标可以表示为(,t).经验证,点M(,t)在直线EF上.所以PQ的中点M的运动路径长

8、就是线段EF的长,EF=.图4图5图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t=2时,PQ的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),得解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。