欢迎来到天天文库
浏览记录
ID:47175975
大小:888.00 KB
页数:8页
时间:2019-08-16
《不确定性原理的前世今生 · 数学篇》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、在现代数学中有一个很容易被外行误解的词汇:信号(signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成
2、一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的:这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏PartitaNo.3的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」:这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十
3、九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。1807年,法国数学家傅立叶(J.Fourier)在一篇向巴黎科学院递交的革命性的论文Mémoiresurlapropagationdelachaleurdanslescorpssolides(《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达为一系列不同频率的简谐振动(即简单的三角函数)的叠加。有趣的是,这结论是他研究热传导问题的一个副产品。这篇论文经拉格朗日(J.Lagrange)、拉普拉斯(P-S.Laplace)和勒让德(A-M.Legendre)等人审阅后被拒绝了
4、,原因是他的思想过于粗糙且极不严密。1811年傅立叶递交了修改后的论文,这一次论文获得了科学院的奖金,但是仍然因为缺乏严密性而被拒绝刊载在科学院的《报告》中。傅立叶对此耿耿于怀,直到1824年他本人成为了科学院的秘书,才得以把他1811年的论文原封不动地发表在《报告》里。用今天的语言来描述,傅立叶的发现实际上是在说:任何一个信号都可以用两种方式来表达,一种就是通常意义上的表达,自变量是时间或者空间的坐标,因变量是信号在该处的强度,另一种则是把一个信号「展开」成不同频率的简单三角函数(简谐振动)的叠加,于是这就相当于把它看作是定义在所有频率所组成的空间(称为频域空间)上的另一
5、个函数,自变量是不同的频率,因变量是该频率所对应的简谐振动的幅度。这两个函数一个定义在时域(或空域)上,一个定义在频域上,看起来的样子通常截然不同,但是它们是在以完全不同的方式殊途同归地描述着同一个信号。它们就象是两种不同的语言,乍一听完全不相干,但是其实可以精确地互相翻译。在数学上,这种翻译的过程被称为「傅立叶变换」。傅立叶变换是一个数学上极为精美的对象:·它是完全可逆的,任何能量有限的时域或空域信号都存在唯一的频域表达,反之亦然。·它完全不损伤信号的内在结构:任何两个信号之间有多少相关程度(即内积),它们的频域表达之间也一定有同样多的相关程度。·它不改变信号之间的关联性
6、:一组信号收敛到一个特定的极限,它们的频域表达也一定收敛到那个极限函数的频域表达。傅立叶变换就象是把信号彻底打乱之后以最面目全非的方式复述出来,而一切信息都还原封不动的存在着。要是科幻小说作家了解这一点,他们本来可以多出多少有趣的素材啊。在傅立叶变换的所有这些数学性质中,最不寻常的是这样一种特性:一个在时域或空域上看起来很复杂的信号(譬如一段声音或者一幅图像)通常在频域上的表达会很简单。这里「简单」的意思是说作为频域上的函数,它只集中在很小一块区域内,而很大一部分数值都接近于零。例如下图是一张人脸和它对应的傅立叶变换,可以看出,所有的频域信号差不多都分布在中心周围,而大部分
7、周边区域都是黑色的(即零)。这是一个意味深长的事实,它说明一个在空域中看起来占满全空间的信号,从频域中看起来很可能只不过占用了极小一块区域,而大部分频率是被浪费了的。这就导出了一个极为有用的结论:一个看起来信息量很大的信号,其实可以只用少得多的数据来加以描述。只要对它先做傅里叶变换,然后只记录那些不接近零的频域信息就可以了,这样数据量就可以大大减少。基本上,这正是今天大多数数据压缩方法的基础思想。在互联网时代,大量的多媒体信息需要在尽量节省带宽和时间的前提下被传输,所以数据压缩从来都是最核心的问题之一。而今天几乎所
此文档下载收益归作者所有