几种压缩算法原理介绍

几种压缩算法原理介绍

ID:47175717

大小:134.50 KB

页数:4页

时间:2019-08-16

几种压缩算法原理介绍_第1页
几种压缩算法原理介绍_第2页
几种压缩算法原理介绍_第3页
几种压缩算法原理介绍_第4页
资源描述:

《几种压缩算法原理介绍》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、几种压缩算法原理介绍1.  RLERLE又叫RunLengthEncoding,是一个针对无损压缩的非常简单的算法。它用重复字节和重复的次数来简单描述来代替重复的字节。尽管简单并且对于通常的压缩非常低效,但它有的时候却非常有用(例如,JPEG就使用它)。1.1.原理图2.1显示了一个如何使用RLE算法来对一个数据流编码的例子,其中出现六次的符号‘93’已经用3个字节来代替:一个标记字节(‘0’在本例中)重复的次数(‘6’)和符号本身(‘93’)。RLE解码器遇到符号‘0’的时候,它表明后面的两个字节决定了

2、需要输出哪个符号以及输出多少次。1.2.实现RLE可以使用很多不同的方法。基本压缩库中详细实现的方式是非常有效的一个。一个特殊的标记字节用来指示重复节的开始,而不是对于重复非重复节都codingrun。因此非重复节可以有任意长度而不被控制字节打断,除非指定的标记字节出现在非重复节(顶多以两个字节来编码)的稀有情况下。为了最优化效率,标记字节应该是输入流中最少出现的符号(或许就不存在)。重复runs能够在32768字节的时候运转。少于129字节的要求3个字节编码(标记+次数+符号),而大雨128字节要求四个

3、字节(标记+次数的高4位

4、0x80+次数的低4位)。这是通常所有采用的压缩的做法,并且也是相比较三个字节固定编码(允许使用3个字节来编码256个字节)而言非常少见的有损压缩率的方法。在这种模式下,最坏的压缩结果是:输出大小=257/256*输入大小+12.  哈夫曼哈夫曼编码是无损压缩当中最好的方法。它使用预先二进制描述来替换每个符号,长度由特殊符号出现的频率决定。常见的符号需要很少的位来表示,而不常见的符号需要很多为来表示。哈夫曼算法在改变任何符号二进制编码引起少量密集表现方面是最佳的。然而,它并不处理

5、符号的顺序和重复或序号的序列。2.1.原理我不打算探究哈夫曼编码的所有实际的细节,但基本的原理是为每个符号找到新的二进制表示,从而通常符号使用很少的位,不常见的符号使用较多的位。简短的说,这个问题的解决方案是为了查找每个符号的通用程度,我们建立一个未压缩数据的柱状图;通过递归拆分这个柱状图为两部分来创建一个二叉树,每个递归的一半应该和另一半具有同样的权(权是∑NK=1符号数k,N是分之中符号的数量,符号数k是符号k出现的次数)这棵树有两个目的:1. 编码器使用这棵树来找到每个符号最优的表示方法2. 解码器

6、使用这棵树唯一的标识在压缩流中每个编码的开始和结束,其通过在读压缩数据位的时候自顶向底的遍历树,选择基于数据流中的每个独立位的分支,一旦一个到达叶子节点,解码器知道一个完整的编码已经读出来了。我们来看一个例子会让我们更清楚。图2.2显示了一个10个字节的未压缩的数据。根据符号频率,哈夫曼编码器生成哈夫曼树(图2.4)和相应的编码表示(图2.3)。 你可以看到,常见的符号接近根,因此只要少数位来表示。于是最终的压缩数据流如图2.5所示。压缩后的数据流是24位(三个字节),原来是80位(10个字节)。当然,我

7、应该存储哈夫曼树,这样解码器就能够解码出对应的压缩流了,这就使得该例子中的真正数据流比输入的流数据量大。这是相对较短的数据上的副作用。对于大数据量来说,上面的哈夫曼树就不占太多比例了。解码的时候,从上到下遍历树,为压缩的流选择从左/右分支,每次碰到一个叶子节点的时候,就可以将对应的字节写到解压输出流中,然后再从根开始遍历。2.2.实现哈夫曼编码器可以在基本压缩库中找到,其是非常直接的实现。这个实现的基本缺陷是:1. 慢位流实现2. 相当慢的解码(比编码慢)3. 最大的树深度是32(编码器在任何超过32位大

8、小的时候退出)。如果我不是搞错的话,这是不可能的,除非输出的数据大于232字节。另一方面,这个实现有几个优点:1. 哈夫曼树以一个紧密的形式每个符号要求12位(对于8位的符号)的方式存储,这意味着最大的头为384。2. 编码相当容易理解哈夫曼编码在数据有噪音的情况(不是有规律的,例如RLE)下非常好,这中情况下大多数基于字典方式的编码器都有问题。3.  Rice对于由大word(例如:16或32位)组成的数据和教低的数据值,Rice编码能够获得较好的压缩比。音频和高动态变化的图像都是这种类型的数据,它们被

9、某种预言预处理过(例如delta相邻的采样)。尽管哈夫曼编码处理这种数据是最优的,却由于几个原因而不适合处理这种数据(例如:32位大小要求16GB的柱状图缓冲区来进行哈夫曼树编码)。因此一个比较动态的方式更适合由大word组成的数据。3.1.原理Rice编码背后的基本思想是尽可能的用较少的位来存储多个字(正像使用哈夫曼编码一样)。实际上,有人可能想到Rice是静态的哈夫曼编码(例如,编码不是由实际数据内容的统计信息决定,而是由

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。