欢迎来到天天文库
浏览记录
ID:47123479
大小:96.00 KB
页数:12页
时间:2019-08-08
《材料化学作业1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、1.材料中的结合键有哪几种?它们对材料的特性有何影响?答:一、材料中的结合键有离子键,共价键,金属键,分子键和氢键。具体如下:㈠、离子键 离子键是由正负电荷的相互吸引造成的。例如,钠原子的价轨道中有一个电子,它很容易将外层电子释放而成为带正电的离子。同样,氯原子容易接受一个电子进入它们的价轨道直至达到八个电子而成为带负电的离子。既然带负电和带正电的材料之间总存在静电引力,那么在带不同电荷的相邻离子间就形成了键。离子键的特点是与正离子相邻的是负离子,与负离子相邻的是正离子。 ㈡、共价键 共价键是一种强吸引力的结合键。当两个相同原子或性质相近的原子接近时,价电子不会转移,原子间
2、借共用电子对所产生的力而结合,形成共价键。共价键使原子间有很强的吸引力,这一点在金刚石中很明显,金刚石是自然界中最硬的材料,而且它完全是由碳原子组成。每个碳原子有四个价电子,这些价电子与邻近原子共用,形成完全由价电子对结合而成的三维点阵。这些三维点阵使金刚石具有很高的硬度和熔点。㈢、金属键 金属是由金属键结合而成的,它具有同非金属完全不同的特性。金属原子的外层电子少,容易失去。当金属原子相互靠近时,这些外层原子就脱离原子,成为自由电子,为整个金属所共有,自由电子在金属内部运动,形成电子气。这种由自由电子与金属正离子之间的结合方式称为金属键。㈣、分子键 分子键又叫范德瓦尔斯键
3、,是最弱的一种结合键。它是靠原子各自内部电子分布不均匀产生较弱的静电引力,称为范德瓦尔斯力,由这种分子力结合起来的键叫做分子键。㈤、氢键 另一种范德瓦尔斯力实际上是极性分子的一种特殊情况。C-H、O-H或N-H键端部暴露的质子是没有电子屏蔽的,所以,这个正电荷可以吸引相邻分子的价电子,于是形成了一种库仑型的键,称为氢键,氢键是所有范德瓦尔斯键中最强的。氢键最典型的例子是水,一个水分子中氢质子吸引相邻分子中氧的孤对电子,氢键使水成为所有低分子量物质中沸点最高的物质。二、结合键对材料性能的影响㈠、金属材料 金属材料的结合键主要是金属键。由于自由电子的存在,当金属受到外加电场作用
4、时,其内部的自由电子将沿电场方向作定向运动,形成电子流,所以金属具有良好的导电性;金属除依靠正离子的振动传递热能外,自由电子的运动也能传递热能,所以金属的导热性好;随着金属温度的升高,正离子的热振动加剧,使自由电子的定向运动阻力增加,电阻升高,所以金属具有正的电阻温度系数;当金属的两部分发生相对位移时,金属的正离子仍然保持金属键,所以具有良好的变形能力;自由电子可以吸收光的能量,因而金属不透明;而所吸收的能量在电子回复到原来状态时产生辐射,使金属具有光泽。金属中也有共价键(如灰锡)和离子键(如金属间化合物Mg3Sb2)。㈡、陶瓷材料 简单说来,陶瓷材料是包含金属和非金属元素的化合物
5、,其结合键主要是离子键和共价键,大多数是离子键。离子键赋予陶瓷材料相当高的稳定性,所以陶瓷材料通常具有极高的熔点和硬度,但同时陶瓷材料的脆性也很大。㈢、高分子材料 高分子材料的结合键是共价键、氢键和分子键。其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能。2.介绍贮氢合金类别,并说明其贮氢、释氢化学过程答:自20世纪60年代二元金属氢化物问世以来,人们从未停止过新型贮氢合金的研究与发展,为满足各种性能的要求,已在二元合金的基础上,开发出三元、四元、
6、五元、乃至多元合金。但不论哪种合金,都离不开A、B两种元素,A元素是发热型金属,如Ti、Zr、La、Mg、Ca、Mn——混合稀土金属等;B元素是吸热型金属,如Ni、Fe、Co等。按其原子比的不同,它们构成AB5型、AB2型、AB型、A2B型等四种类型。贮氢合金在常温常压(附近)下与氢反应,成为合金氢化物,通过加热或减压将贮存的氢气放出;通过冷却或加压再次吸收于合金中,利用这一特性可有效地贮氢。3.功能陶瓷按其功能性质不同,可以分为哪几大类?各举一例说明答:功能陶瓷按其功能性质不同,可以分为电子陶瓷,磁性陶瓷,敏感陶瓷,超导陶瓷,光学陶瓷和生物陶瓷六大类。举例如下:电子陶瓷:如半导体陶瓷,具
7、有半导体特性的陶瓷材料。半导体陶瓷导电性能介于金属与绝缘体之间。半导体陶瓷的电导率因外界条件(温度、光照、电场、气氛和温度等)的变化而发生显著的变化,因此可以将外界环境的物理量变化转变为电信号,制成各种用途的敏感元件。磁性陶瓷:如铁氧体磁铁,主要用于磁铁和磁存储元件。敏感陶瓷:如光敏陶瓷,也称光敏电阻瓷,属半导体陶瓷。由于材料的电特性不同以及光子能量的差异,它在光的照射下吸收光能,产生不同的光电效应:光电导效应和光生伏特
此文档下载收益归作者所有