欢迎来到天天文库
浏览记录
ID:47093352
大小:6.08 MB
页数:102页
时间:2019-07-25
《【9A文】中考数学压轴题100题精选及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【MeiWei_81重点借鉴文档】中考数学压轴题100题精选【001】如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.(1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并
2、求出最小值及此时的长.xyMCDPQOABACBPQED图16【002】如图16,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运
3、动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线R=aR2+bR过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过
4、点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。【004】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关ADBEOCFxyy(G)的函数关系式,并写出相应的的取值范围.【MeiWei_81重
5、点借鉴文档】【MeiWei_81重点借鉴文档】【005】如图1,在等腰梯形中,,是的中点,过点作交于点.,.(1)求点到的距离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.ADEBFC图4(备用)ADEBFC图5(备用)ADEBFC图1图2ADEBFCPNM图3ADEBFCPNM(第25题)【006】如图13,二次函数
6、的图象与R轴交于A、B两点,与R轴交于点C(0,-1),ΔABC的面积为。(1)求该二次函数的关系式;(2)过R轴上的一点M(0,m)作R轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在R轴的正半轴上,直线AC交R轴于点M,AB边交R轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A
7、出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。求证:BE=AD;求证:AC是线段ED的垂直平分线;△DBC是等腰三角形吗?并说明
8、理由。【009】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接.(1)若点在反比例函数的图象的同一分支上,如图1,试证
此文档下载收益归作者所有