2019全国2卷理科数学试题及详解

2019全国2卷理科数学试题及详解

ID:47068599

大小:265.05 KB

页数:19页

时间:2019-07-14

2019全国2卷理科数学试题及详解_第1页
2019全国2卷理科数学试题及详解_第2页
2019全国2卷理科数学试题及详解_第3页
2019全国2卷理科数学试题及详解_第4页
2019全国2卷理科数学试题及详解_第5页
资源描述:

《2019全国2卷理科数学试题及详解》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。1.设集合A=xx2-5x+6>0,B=xx-1<0,则A∩B=(A)A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)2.设z=-3+2i,则在复平面z对应的点位于(C)A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB=2,3,AC=3,t,BC=1,则AB∙BC=(C)A.-3B.-2C.2D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯

2、联系。为解决这个问题,发射了嫦娥四号中继星“鹊桥”。鹊桥沿着围绕地月拉格朗日L2点的轨道运行,L2点是平衡点,位于地月连线的延长线上,设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定理和万有引力定律,r满足方程:M1R+r2+M2r2=(R+r)M1R3设α=rR,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为(D)A.M2M1RB.M22M1RC.33M2M1RD.3M23M1R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、一个最低分

3、,得到7个有效评分。7个有效评分与9个原始评分相比,不变的数字特征是(A)A.中位数B.平均数C.方差D.极差6.若a>b,则(C)A.lna-b>0B.3a<3bC.a3-b3>0D.a>

4、b

5、7.设α,β为两个平面,则α∥β的充要条件是(B)A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2pxp>0的焦点是椭圆x23p+y2p=1的一个焦点,则p=(D)A.2B.3C.4D.89.下列函数中,以π2为周期且在区间π4,π2单调递增的是(A)A.fx=

6、cos2x

7、B.fx=

8、sin2x

9、

10、C.fx=cosxD.fx=sin⁡

11、x

12、10.已知α∈0,π2,2sin2α=cos2α+1,则sinα=(B)A.15B.55C.33D.25511.设F为双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若PQ=OF,则C的离心率为(A)A.2B.3C.2D.512.设函数fx的定义域为R,满足fx+1=2fx,且当x∈0,1时,fx=xx-1.若对任意x∈-∞,m,都有fx≥-89,则m的取值范围是(B)A.(-∞,94]B.(-∞,73]C.(-∞,52]D.(-∞,83]二、填空题:本题

13、共4小题,每题5分,共20分。13.我国高铁发展迅速,技术先进。经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为14.已知fx是奇函数,且当x<0时,fx=-eax,若fln2=8,则a=15.△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为16.中国有悠久的金石文化,印信时金石文化的代表之一。印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员孤独信的印信形状是“半正多面体”图1.半正多面体

14、是由两种或两种以上的正多边形围成的多面体。半正多面体体现了数学的对称美。图2是一个棱数为48的半正多面体,它的所有顶点都在同一正方体的表面上,且此正方体的棱长为1,则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分。)三、解答题:共70分。第17~21题为必考题。第22、23题为选考题。(一)必考题:共60分17.(12分)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形、点E在棱AA1上,BE⊥EC1.1证明:BE⊥平面EB1C1;2若AE=A1E,求二面角B-EC-C1的正弦值.18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10

15、:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束。甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立。在某局双方10:10后,甲先发球,两人又打了X个球该局比赛结束。1求PX=2;2求事件“X=4且甲获胜”的概率。19.(12分)已知数列an和bn满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.1证明:an+bn是等比数列,an-bn是等差数列;2求an和bn的通项公式.20.(12分)已知函数fx=lnx-x+1x-11讨论fx

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。