欢迎来到天天文库
浏览记录
ID:47061484
大小:37.00 KB
页数:7页
时间:2019-07-11
《【AAA】大数据处理综合处理服务平台的设计与实现》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、【MeiWei_81重点借鉴文档】大数据处理综合处理服务平台的设计与实现 (广州城市职业学院广东广州510405) 摘要:在信息技术高速发展的今天,金融业面临的竞争日趋激烈,信息的高度共享和数据的安全可靠是系统建设中优先考虑的问题。大数据综合处理服务平台支持灵活构建面向数据仓库、实现批量作业的原子化、参数化、操作简单化、流程可控化,并提供灵活、可自定义的程序接口,具有良好的可扩展性。该服务平台以SOA为基础,采用云计算的体系架构,整合多种ETL技术和不同的ETL工具,具有统一、高效、可拓展性。该系统整合金融机构的客户、合约、交易、财务、产品等主要业务数据,提供客户视图
2、、客户关系管理、营销管理、财务分析、质量监控、风险预警、业务流程等功能模块。该研究与设计打破跨国厂商在金融软件方面的垄断地位,促进传统优势企业走新型信息化道路,充分实现了“资源共享、低投入、低消耗、低排放和高效率”,值得大力发展和推广。 关键词:面向金融,大数据,综合处理服务平台。 一、研究的意义 目前,全球IT行业讨论最多的两个议题,一个是大数据分析“BigData”,一个是云计算“CloudComputing”。中国五大国有商业银行发展至今,积累了海量的业务数据,同时还不断的从外界收集数据。据IDC(国际数据公司)预测,用于云计算服务上的支出在接下来的5年间可能
3、会出现3倍的增长,占据IT支出增长总量中25%的份额。目前企业的各种业务系统中数据从GB、TB到PB量级呈海量急速增长,相应的存储方式也从单机存储转变为网络存储。传统的信息处理技术和手段,如数据库技术往往只能单纯实现数据的录入、查询、统计等较低层次的功能,无法充分利用和及时更新海量数据,更难以进行综合研究,中国的金融行业也不例外。中国五大国有商业银行发展至今,积累了海量的业务数据,同时还不断的从外界收集数据。通过对不同来源,不同历史阶【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】段的数据进行分析,银行可以甄别有价值潜力的客户群和发现未来金融市场的发展
4、趋势,针对目标客户群的特点和金融市场的需求来研发有竞争力的理财产品。所以,银行对海量数据分析的需求是尤为迫切的。再有,在信息技术高速发展的今天,金融业面临的竞争日趋激烈,信息的高度共享和数据的安全可靠是系统建设中优先考虑的问题。随着国内银行业竞争的加剧,五大国有商业银行不断深化以客户为中心,以优质业务为核心的经营理念,这对银行自身系统的不断完善提出了更高的要求。而“云计算”技术的推出,将成为银行增强数据的安全性和加快信息共享的速度,提高服务质量、降低成本和赢得竞争优势的一大选择。 面向金融领域的海量数据综合处理服务平台融合了分布式云计算技术、SOA技术、ETL技术、作业
5、调度技术,以SOA为基础,采用云计算的体系架构,整合多种ETL技术和不同的ETL工具,为金融行业建立统一、高效、可拓展的面向金融领域的海量数据综合处理服务平台。该平台支持灵活构建面向数据仓库、数据集市、数据集文件进行海量数据的处理、加工和交换,实现批量作业的原子化、参数化、操作简单化、流程可控化,并提供灵活、可自定义的程序接口,具有良好的可扩展性,是一个基础服务框架的产品平台。该系统整合金融机构的客户、合约、交易、财务、产品等主要业务数据,提供客户视图、客户关系管理、营销管理、财务分析、质量监控、风险预警、业务流程等功能模块。系统支持构筑面向运营的服务平台,可以按功能点或
6、数据量来向使用方收费,使用方按格式要求提供数据,然后点击相关功能模块得到目标结果。 随着全球各行业对数据整合应用需求的扩大,“面向金融领域的海量数据综合处理服务平台”的需求将会越来越大。该平台为银行、证券、保险行业等金融领域服务业创新和转型升级提供决策支持,能有效推进信息化技术在传统金融优势产业的融合渗透【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】,属于国家优先发展和重点支持技术领域。从宏观的角度来看,通过本服务平台的实施,能促进我国金融信息化的发展,调整产业结构,同时增强企业品牌竞争力,提高企业在国内外信息科技领域的知名度,打破跨国厂商在金融软
7、件方面的垄断地位,促进传统优势企业走新型信息化道路,完善社会主义市场经济体制,符合我国“十R五”规划刚要发展的特点,对全面建设小康社会新胜利、推进中国特色社会主义伟大事业,具有十分重要的意义。 二、平台设计的技术线路 1、基础技术架构采用了当前先进的云计算技术,系统采用基于Hadoop架构计算模式,突破传统数据库系统对海量数据处理的速度限制,通过对大量数据的并发访问和处理,极大地提高了数据处理效率。 2、基于SOA方式的批量处理作业调度逻辑设计,采用集中式管理、分布式、多节点并行运算的设计概念,实现跨平台、面向数据、高效
此文档下载收益归作者所有