欢迎来到天天文库
浏览记录
ID:47058115
大小:1010.50 KB
页数:9页
时间:2019-07-11
《数学北师大版八年级上册求解二元一次方程组(第1课时)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第五章二元一次方程组2.求解二元一次方程组(第1课时)闽宁中学尹弟发一.学生起点分析学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二元一次方程、二元一次方程组及其解等基本概念,具备了进一步学习二元一次方程组解法的基本能力,会通过列一元一次方程解应用题,能通过分析找出题中的等量关系列出二元一次方程组.学生活动经验基础:有同学间相互交流合作、自主探索的经验,有在活动过程中总结经验、归纳知识点的经验.二.教学任务分析《二元一次方程组的解法》是义务教育课程标准北师大版实
2、验教科书八年级(上)第五章《二元一次方程组》的第二节,要求学生能利用消元思想熟练的解二元一次方程组,本节体现的消元方法有代入消元法、加减消元法,教材安排了2个课时分别完成.本节课为第1课时.基于学生对二元一次方程及二元一次方程组的基本概念理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程组的解法——代入消元法.代入消元法是解二元一次方程组的基本方法之一,它要求从两个方程中选择一个系数比较简单的方程,将它转换成用含有一个未知数的代数式表示另一个未知数的形式,然后代入另一
3、个方程,求出这个未知数的值,最后将这个未知数的值代入已变形的那个方程,求出另一个未知数的值.在求出方程组的解之后,可以对求出的解进行检验,这样可以防止和纠正方程变形和计算过程中可能出现的错误.二元一次方程组的解法,其本质思想是消元,体会“化未知为已知”的化归思想.为此,本节课的教学目标是:(1)会用代入消元法解二元一次方程组;(2)了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.本节课的教学重点是:用代入消元法解二元一次方程组.本节课的教学难点是:在解题过程中体会“消元”思想和“化未知为已知”的
4、化归思想.●教学重点1.会用代入消元法解二元一次方程组.2.了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.●教学难点1.“消元”的思想.2.“化未知为已知”的化归思想.●教学方法启发——自主探索相结合.教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程.二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤.三.教学过程设计:本节课设计了六个教学环节:第一环节:情境引入;第二环节:探索新知;第三环节:
5、巩固新知;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业.第一环节:情境引入内容:一个苹果和一个梨的质量合计200克,这个苹果的质量加上一个10克的砝码恰好与这个梨的质量相等,问苹果和梨的质量各为多少克?设计效果:通过对学生实际生活的情景引入,学生知识获得既感到自然又倍添新奇,有跃跃欲试的心情.第二环节:探索新知内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?(由学生独立思考解决,教师注意指导学生规范表达)解:设去了x个成人,则去了个儿童,根据
6、题意,得:解得:将代入,解得:8-5=3.答:去了5个成人,3个儿童.在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人
7、数相比较,得出个.因此y应该等于.而由二元一次方程组的一个方程,根据等式的性质可以推出.2.发现一元一次方程中与方程组中的第二个方程相类似,只需把中的“y”用“”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将中的①变形,得③,我们把代入方程②,即将②中的y用代替,这样就有.“二元”化成“一元”.教师总结:同学们很善于思考
8、.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)解:由①得:.③将③代入②得:.解得:.把代入③得:.所以原方程组的解为:(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方
此文档下载收益归作者所有