资源描述:
《年 年考研数学一历年真题汇总》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则(A)(B)(C)(D)(2)如图,正方形被其对角线划分为四个区域,,则(A)(B)(C)(D)(3)设函数在区间上的图形为1-2023-1O则函数的图形为(A)0231-2-11(B)0231-2-11(C)0231-11(D)0231-2-11(4)设有两个数列,若,则(A)当收敛时,收敛.(B)当发散时,发散.(C)当收敛时,收敛.(D)当发散时,发散.(5)设是3维向量空间的一
2、组基,则由基到基的过渡矩阵为(A)(B)(C)(D)(6)设均为2阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为(A)(B)(C)(D)(7)设随机变量的分布函数为,其中为标准正态分布函数,则(A)0(B)0.3(C)0.7(D)1(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为(A)0(B)1(C)2(D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数具有二阶连续偏导数,,则.(10)若二阶常系数线性齐次微分方程的通解为,则非齐次方程满足条件的解为.(11)已知曲线,则.(12)
3、设,则.(13)若3维列向量满足,其中为的转置,则矩阵的非零特征值为.(14)设为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差.若为的无偏估计量,则.三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分9分)求二元函数的极值.(16)(本题满分9分)设为曲线与所围成区域的面积,记,求与的值.(17)(本题满分11分)椭球面是椭圆绕轴旋转而成,圆锥面是过点且与椭圆相切的直线绕轴旋转而成.(1)求及的方程.(2)求与之间的立体体积.(18)(本题满分11分)(1)证明拉格朗日中值定理:若函数在上连续,在可
4、导,则存在,使得.(2)证明:若函数在处连续,在内可导,且,则存在,且.(19)(本题满分10分)计算曲面积分,其中是曲面的外侧.(20)(本题满分11分)设,(1)求满足的.的所有向量,.(2)对(1)中的任意向量,证明无关.(21)(本题满分11分)设二次型.(1)求二次型的矩阵的所有特征值;(2)若二次型的规范形为,求的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以分别表示两次取球所取得的红球、黑球与白球的个数.(1)求.(2)求二维随机变量概率分布.(23)(本题满分11分)设总体的概率密度为,其中参数未知,,,…是来自总
5、体的简单随机样本.(1)求参数的矩估计量.(2)求参数的最大似然估计量.2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限=(A)1(B)(C)(D)(2)设函数由方程确定,其中为可微函数,且则=(A)(B)(C)(D)(3)设为正整数,则反常积分的收敛性(A)仅与取值有关(B)仅与取值有关(C)与取值都有关(D)与取值都无关(4)=(A)(B)(C)(D)(5)设为型矩阵为型矩阵,若则(A)秩秩(B)秩秩(C)秩秩(D)秩秩(6)设为4阶对称矩阵,且
6、若的秩为3,则相似于(A)(B)(C)(D)(7)设随机变量的分布函数则=(A)0(B)1(C)(D)(8)设为标准正态分布的概率密度为上均匀分布的概率密度,为概率密度,则应满足(A)(B)(C)(D)二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设求=.(10)=.(11)已知曲线的方程为起点是终点是则曲线积分=.(12)设则的形心的竖坐标=.(13)设若由形成的向量空间的维数是2,则=.(14)设随机变量概率分布为则=.三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分
7、10分)求微分方程的通解.(16)(本题满分10分)求函数的单调区间与极值.(17)(本题满分10分)(1)比较与的大小,说明理由.(2)记求极限(18)(本题满分10分)求幂级数的收敛域及和函数.(19)(本题满分10分)设为椭球面上的动点,若在点的切平面与面垂直,求点的轨迹并计算曲面积分其中是椭球面位于曲线上方的部分.(20)(本题满分11分)设已知线性方程组存在两个不同的解.(1)求(2)求方程组的通解