欢迎来到天天文库
浏览记录
ID:47024259
大小:679.50 KB
页数:60页
时间:2019-06-28
《高考导数压轴题---函数与导数核心考点》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、导数与函数核心考点目录题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需“二次求导”型2.主导函数为“一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证
2、明问题1.单变量型不等式证明2.含有ex与lnx的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法60题型一切线型1.求在某处的切线方程例1.【2015重庆理20】求函数f(x)=在点(1,f(1))处的切线方程.解:由f(x)=,得f′(x)=,切点为(1,),斜率为f′(1)=由f(1)=,得切点坐标为(1,),由f′(1)=,得切线斜率为;∴切线方程为y-=(x-1),即3x-ey=0.例2.求f(x)=ex(+2)在点(1,f(1))处的切线方程.解:由f(x)=ex(+2),得f′(x)=ex(-++2)由f
3、(1)=3e,得切点坐标为(1,3e),由f′(1)=2e,得切线斜率为2e;∴切线方程为y-3e=2e(x-1),即2ex-y+e=0.例3.求f(x)=ln在点(0,f(0))处的切线方程.解:由f(x)=ln=ln(1-x)-ln(1+x),得f′(x)=--由f(0)=0,得切点坐标为(0,0),由f′(0)=-2,得切线斜率为-2;∴切线方程为y=-2x,即2x+y=0.例4.【2015全国新课标理20⑴】在直角坐标系xoy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点,当k=0时,分别求C在点M与N处的切线方程
4、.解:由题意得:a=,则x=±2,即M(-2,a),N(2,a),由f(x)=,得f′(x)=,当切点为M(-2,a)时,切线斜率为f′(-2)=-,此时切线方程为:x+y+a=0;60当切点为N(2,a)时,切线斜率为f′(2)=,此时切线方程为:x-y-a=0;求在某处的切线方程⑴写出f(x);⑵求出f′(x);⑶写出切点(x0,f(x0));⑷切线斜率k=f′(x0);⑸切线方程为y-f(x0)=f′(x0)(x-x0).2.求过某点的切线方程点P在曲线上切点点P在曲线上不确定是切点点P不在曲线上不是切点POoPPOoOoStep1
5、设切点为(x0,f(x0)),则切线斜率f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0)Step2因为切线过点(a,b),所以b-f(x0)=f′(x0)(a-x0),解得x0=x1或x0=x2Step2当x0=x1时,切线方程为y-f(x1)=f′(x0)(x-x1)当x0=x2时,切线方程为y-f(x2)=f′(x0)(x-x2)例1.求f(x)=x3+过点P(2,4)的切线方程.解:设切点为(x0,x03+),则切线斜率f′(x0)=x0²,所以切线方程为:y-x03+=x0²(x-x0),由切线经过点P(2,4)
6、,可得4-x03+=x0²(2-x0),整理得:x03-3x0²+4=0,解得x0=-1或x0=2当x0=-1时,切线方程为:x-y+2=0;当x0=2时,切线方程为:4x-y-4=0.例2.求f(x)=x3-4x²+5x-4过点(2,-2)的切线方程.解:设切点为(x0,x03-4x0²+5x0-4),则切线斜率f′(x0)=3x0²-8x0+5,所以切线方程为:y-(x03-4x0²+5x0-4)=(3x0²-8x0+5)(x-x0),由切线经过点P(2,4),可得4-(x03-4x0²+5x0-4)=(3x0²-8x0+5)(2-x
7、0),解得x0=1或x0=2当x0=1时,切线方程为:2x+y-2=0;当x0=2时,切线方程为:x-y-4=0.60例3.过A(1,m)(m≠2)可作f(x)=x3-3x的三条切线,求m的取值范围.解:设切点为(x0,x03-3x0),则切线斜率f′(x0)=3x0²-3,切线方程为y-(x03-3x0)=(3x0²-3)(x-x0)∵切线经过点P(1,m),∴m-(x03-4x0²+5x0-4)=(3x0²-8x0+5)(1-x0),即:-2x03+3x0²-3-m=0,即m=-2x03+3x0²-3∵过点A(1,m)(m≠2)可作f
8、(x)=x3-3x的三条切线,∴方程m=-2x03+3x0²-3,有三个不同的实数根.∴曲线H(x0)=-2x03+3x0²-3与直线y=m有三个不同交点,H′(x0)=-6x0²+6x0=-
此文档下载收益归作者所有