资源描述:
《On-line estimation of permanent magnet flux linkage ripple for PMSM based on a Kalman filter》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、On-lineestimationofpermanentmagnetfluxlinkagerippleforPMSMbasedonaKalmanfilterXiaoXi,ZhangMeng,LiYongdong,LiMinTheDepartmentofElectricalEngineeringandAppliedElectronicsTsinghuaUniversityBeijing,100084CHINAxiao_xi@mail.tsinghua.edu.cnAbstract–Inordertog
2、etgoodcontrolperformanceinpermanentcanbeestimated,too.Simulationandexperimentalresultsmagnetsynchronousmotor(PMSM)controlfields,theaccurateshowthattheproposedKalmanfiltercangiveaccuraterotorpermanentmagnetfluxlinkage(rotorfluxlinkage)valueisfluxestimat
3、ionandisrobusttothedeviationofthemotorneeded.Forstatorfluxestimationandfullorderorreducedparameters.orderobserver,therotorfluxlinkageistreatedasaknownandconstantparameter.Butinapplications,therotorfluxlinkageII.KALMANFILTERcanvaryinawiderange.Inthispap
4、er,arotorfluxlinkageobserverbasedonKalmanfilterispresented.AfterrearrangingTheKalmanfilterisaleastsquaresestimateinwhichstatetheequationofinteriorpermanentmagnetsynchronousmotorestimationisaddedtoextenditsapplicationtoadynamic(IPMSM),anewsetofvariables
5、isdefined.Bychoosingthenewsystem,wheretheparametersarevarying.Itsprinciplefeaturesetofvariablesandtherotorfluxlinkageasstatevariables,aistherecursiveprocessingofthenoisemeasurementrisk.Inthree-orderKalmanfilterisconstructed.Forsurfacemountedthissection
6、,thesummaryisexplained.LetthesystemofPMSM(SPMSM),bysubstitutingL=LtotheproposeddqinterestandthediscretemeasurementsbedescribedinKalmanfilter,therotorfluxlinkageofSPMSMcanbeobserved,state-spacemodeltoo.Theperformanceoftheproposedobserverisverifiedbyx"()
7、tA=x()tB++u()ttσ()(1)simulationandexperiments.BoththesimulationresultsandexperimentalresultsshowthattheKalmanfilterestimatestherotorfluxlinkageaccurately.yt()=Hxt()()+μt(2)kkkwhereσ()tandμ()tarezero-meanwhiteGuassiannoisesI.INTRODUCTIONkPermanentmagnet
8、synchronousmotor(PMSM)hasbeenwithcovarianceQt()andR()t,respectively,andkwidelyusedasservomotorsforitshighperformanceandhighindependentfromthesystemstatexandt.Thesystemnoisekefficiency.σ()ttakesintoaccountthesystemdisturbancesandmodelInP