欢迎来到天天文库
浏览记录
ID:46896694
大小:30.50 KB
页数:5页
时间:2019-11-29
《快速成型技术介绍》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、快速成型技术介绍【摘要】本文主要介绍了快速成型技术的起源及特点,技术原理,类型、特点及适用范围,阐述了快速成型技术在各领域的应用,探讨了快速成型技术在今后的发展方向。【关键词】快速成型技术;特点;原理;分类;特点;应用;意义;发展方向【引言】(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度
2、和制造技术的柔性就十分关键。 (3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。所以我们要掌握该技术,才能在未来的商业或国际竞争中立于不败之地。RPM的起源快速成形技术又称快速原型制造(RapidPrototypingManufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思
3、想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。快速成型技术发展至今,以其技术的高集成性、高柔性、高速性而得到了迅速发展,快速成形技术彻底摆脱了传统的“去除”加工法——部分去除大于工件的毛坯上的材料来得到工件。而采用全新的“增长”加工法——用一层层的小毛坯逐步叠加成大工件,将复杂的三维加工分解成简单的二维加工的组合,因此,它不必采用传统的加工机床和模具,只需传统加工方法的10%~30%的工时和20%~3
4、5%的成本,就能直接制造出产品样品或模具。由于快速成形具有上述突出的优势,所以近年来发展迅速,已成为现代先进制造技术中的一项支柱技术,实现并行工程(ConcurrentEngineering,简称CE)必不可少的手段。RPM的特点(1)制造原型所用的材料不限,各种金属和非金属材料均可使用;(2)原型的复制性、互换性高; (3)制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;(4)加工周期短,成本低,成本与产品复杂程度无关; (5)高度技术集成,可实现了设计制造一体化。RPM的基本原理快速成型技术采用离散/堆积成型原理,根据三维CAD模型
5、,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。快速成型的工艺过程原理如下:(1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为
6、STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。(2)三维模型的离散处理:在选
7、定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。综上所述,为提高零件制造精
8、度,在模型面型化处理时,应该选取较小的精度参数;在模型离散化处理时
此文档下载收益归作者所有