资源描述:
《水解酸化池体的计算》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、水解酸化池体的计算 (1)水解(酸化)池有效池容V有效是根据污水在池内的水力停留时间计算的。水解(酸化)池内水力停留时间需根据污水可生化性、进水有机物浓度、当地的平均气温情况综合而定,一般为2.5-4.5h.考虑综合情况,本工程设计中水力停留时间取 T = 4 h,本工程设计流量 Q = 400 m3/d =16.67 m3/h,取 T = 4 h,则有效池容为: 水解酸化池的有效容积 V有效 = QT式中 V有效——水解酸化池的有效容积,m3 , Q----进入水解酸化池的废水平均流量,m3/h ;
2、 T----废水在水解酸化池中的水力停留时间, h 本工程 Q = 16.67 m3/h,T = 4 h,代入公式后: V有效 = 16.67 × 4 = 66.68 m3 , 对于水解酸化反应器,为了保持其处理的高效率,必须保持池内足够多的活性污泥,同时要使进入反应器的废水尽量快地与活性污泥混合,增加活性污泥与进水有机物的接触,这就要求上升流速越高越好。但过高的上升流速又会破坏活性污泥层对进水中SS的生物截留作用,并对活性污泥床进行冲刷,从而将活性污泥带入反
3、应器的出水系统中,使活性污泥流失并使出水效果变差,所以保持合适的上升流速是必要的。 根据实际工程经验,水解酸化池内上升流速V上升一般控制在0.8-1.8 m/h 较合适。 本工程的上升流速V上升 取 0.8 m/h ,所以水解酸化池的有效高度为: H1 = V上升 × T = 0.8 × 4 = 3.2 m 为了保证污水进入池内后能与活性污泥层快速均匀地混合,所以本设计在池体下部专门设有多槽布水区。每条布水槽的截面为上宽下窄的梯形,其高度为0.4 m ,下部水力流速为 1.4 m/h
4、 ,上部水力流速为 0.8 m/h 。 池内实际有效高度为 H有效 = H1 + 0.4 = 3.2 + 0.4 = 3.6 m ,加上池内超高取 0.4 m ,水解池实际总高度为 H = H有效 + 0.4 = 3.6 + 0.4 = 4 m 。 按有效池容计算,水解池有效截面积为:S截面 1 = V有效 / H有效 = 66.68 / 3.6 = 18.52 m2 按上升流速计算,水解池有效截面积为:S截面 2 = Q / V上升 = 16.67 / 0.8 = 20.84 m2 由于 S截
5、面 2 大于 S截面 1 ,水解池实际截面积取 S截面 = 20.84 m2 ,实际取 S截面 = 20 m2 ,取池宽 4 m ,则池长 5 m 。 (2)水解(酸化)反应池布水系统设计 水解酸化反应器良好运行的重要条件之一是保障污泥与废水之间的充分接触,为了布水均匀与克服死区,水解酸化池底部按多槽布水区设计,并且反应器底部进水布水 系统应该尽可能地布水均匀。 水解酸化池的布水系统形式有多种,布水系统兼有配水和水力搅拌的功能,为了保证这两个功能的实现,需要满足以下原则。 1、确保各单位面积的进水量基本相同,
6、以防止发生短路现象; 2、尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合; 3、易观察到进水管的堵塞,并当堵塞发生后很容易被清除。如果酸化采用"泥法"用搅拌泵就可以了,最好不要生物膜法,否则后患无穷,主要是搅拌问题,无论是搅拌泵搅拌、脉冲搅拌等都有问题。至于是否要用鼓风机,当然用不着。但如果后面的好氧池要用风机,建议你将输气管接入酸化池并设置曝气软管,这样酸化池在必要时也可作好氧池用,也可作辅助搅拌用(在有机负荷高的情况下,适量的曝气不会对酸化造成影响的),如单独配风机就没必要了。 现在水解池大多都用上流式的(U
7、ASB),这样解决了好多问题。 但在工程实践中真正要解决布水不匀的问题应从那几个方面入用? 在池内设置填料可减少停留时间,增加水解效果。水解(酸化)池设计计算1、已知条件 某城市污水二级处理厂污水量近期为Q=15000m3/d(625m3/h),总变化系数KZ=1.5,。设计进水水质BOD5=200mg/L,COD=450mg/L,SS=300mg/L,PH=6-8。水解处理出水水质预计为BOD5=120mg/L(去除率40%),COD=292mg/L(去除率35%),SS=60mg/L(去除率80%)。求水解池容
8、积及尺寸。2、设计计算。(1)水解池的容积V,m3;V=KZQHRT式中:KZ——总变化系数; Q——设计流量,m3/h; HRT——水力停留时间,h; 近期设计一组水解池,分为2格。设每格池宽为11.6m,水深为4.4m,按长宽比