九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)

九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)

ID:46453317

大小:1.03 MB

页数:29页

时间:2019-11-23

九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)_第1页
九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)_第2页
九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)_第3页
九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)_第4页
九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)_第5页
资源描述:

《九年级数学上册_24.1.4圆周角定理及其运用课件_人教新课标版(最好版本)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、24.1.4圆周角白塔中学李平复习旧知:请说说我们是如何给圆心角下定义的,试回答?顶点在圆心的角叫圆心角。考考你:你能仿照圆心角的定义,给下图中象∠ACB这样的角下个定义吗?顶点在圆上,并且两边都和圆相交的角叫做圆周角.问题探讨:判断下列图形中所画的∠P是否为圆周角?并说明理由。PPPP不是是不是不是顶点不在圆上。顶点在圆上,两边和圆相交。两边不和圆相交。有一边和圆不相交。当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?.BA

2、CDE生活实践E●OBDCA你能发现什么规律?AC所对的圆周角∠AEC∠ABC∠ADC的大小有什么关系?⌒画一个圆,再任意画一个圆周角,看一下圆心在什么位置?圆心在一边上圆心在角内圆心在角外如图,观察圆周角∠ABC与圆心角∠AOC,它们的大小有什么关系?说说你的想法,并与同伴交流.●OABC●OABC●OABC定理的证明(1)圆心在∠BAC的一边上.AOBC由于OA=OC因此∠C=∠BAC而∠BOC=∠BAC+∠C所以∠BAC=∠BOC12OABC(2)圆心在∠BAC的内部.D作直径AD.由于∠BA

3、D=∠BOD12∠DAC=∠DOC,12所以∠BAD+∠DAC=(∠BOD+∠DOC)12即∠BAC=∠BOC12OABC(3)圆心在∠BAC的外部.D作直径AD.由于∠DAB=∠DOB12∠DAC=∠DOC,12所以∠DAC-∠DAB=(∠DOC-∠DOB)12即∠BAC=∠BOC12圆周角定理在同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的度数的一半。∠ACB的度数与它所对的弧AB的度数有什么关系?分析:连接OA,OB,∵AB=AB⌒⌒∴∠C==1/2∠AOB∴∠ACB的度数等于它所对

4、的弧AB的度数的一半.规律:圆周角的度数等于它所对的弧的度数的一半当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?.BACDE生活实践E●OBDCA规律:都相等,都等于圆心角∠AOC的一半AC所对的圆周角∠AEC∠ABC∠ADC的大小有什么关系?⌒结论:同弧或等弧所对的圆周角相等。结论:圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。结论:圆周角的定理:在同圆或等圆中,同弧或等弧所对的

5、圆周角相等,都等于这条弧所对的圆心角的一半。在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.巩固练习:如图,点A,B,C,D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?ABCD12345678问题1:如图,AB是⊙O的直径,请问:∠C1、∠C2、∠C3的度数是。ABOC1C2C3推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。问题2:若∠C1、∠C2、∠C3是直角,

6、那么∠AOB是。90°180°探究与思考:·ABC1OC2C3归纳:定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.定理半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.在同圆或等圆中,相等的圆周角所对的弧相等推论练一练1、如图,在⊙O中,∠ABC=50°,则∠AOC等于()A、50°;B、80°;C、90°;D、100°ACBOD2、如图,△ABC是等边三角形,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC等于()A、30°;B、60°;C、9

7、0°;D、45°CABPB练一练3、如图,∠A=50°,∠AOC=60°BD是⊙O的直径,则∠AEB等于()A、70°;B、110°;C、90°;D、120°B4、如图,△ABC的顶点A、B、C都在⊙O上,∠C=30°,AB=2,则⊙O的半径是。ACBODECABO解:连接OA、OB∵∠C=30°,∴∠AOB=60°又∵OA=OB,∴△AOB是等边三角形∴OA=OB=AB=2,即半径为2。25.如图,你能设法确定一个圆形纸片的圆心吗?你有多少种方法?与同学交流一下.DABCOOO·方法一方法二方法三

8、方法四AB练习第二课时 应用回顾:圆周角定理及推论?思考:判断正误:1.同弧或等弧所对的圆周角相等(  )2.相等的圆周角所对的弧相等(  )3.90°角所对的弦是直径(  )4.直径所对的角等于90°()5.长等于半径的弦所对的圆周角等于30°()例如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.又在Rt△ABD中,AD2+BD2=AB2,解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,∵CD平分∠

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。