欢迎来到天天文库
浏览记录
ID:46450070
大小:67.50 KB
页数:3页
时间:2019-11-23
《数学历史论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、邢台电大13秋土木(木)专业第二次提交作业数学历史中的数学文化姓名:李闯飞学号:131300126(X)3613秋土木工程木科【摘要L数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,这些凝聚了数学家们智慧的知识不是儿句话就能说明白。数学的方法是贯穿了整个数学,也是学习数学的基础。在此我将我所学到的和我心屮所想的一些数学方法和思想写岀略表我对数学的解读。历史上,数学的发展有顺利也有曲折。人的1111折也可以叫做危机。危机也意味着挑战,危机的解决就意味着进步。所以,危机往往是数学发展的动力。数学发展史上共有三次数学危机。每一次都是数学的基本部分受到质疑。实际上,也恰恰是这三次危机引发了数
2、学史上的三次思想解放,大大推动了数学科学的发展。【关键词】:数学的智慧和魅力、三次数为危机、数学方法和思想、数沪发展一、智慧展现一数学方法和数学思想数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;这些方法Z间有联系又有区别。(一)、具体与抽象具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是-•种利用口身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽彖的,数学的方法也是抽彖的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧儿何人类町能还要在牛顿的时空观屮走过许多年才能寻找到相对论
3、。数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对彖的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。现在,数学研究的对彖已不是具体、特殊的对彖,而是抽彖的数学结构。(二)、演绎与归纳演绎法是由一般到特殊的推理,它有三段论的表现形式,由一•般的判断,特殊判断,结论三部分组成。归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。看起来归纳与演绎很冇区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。(三)、发现与证明发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。猜想是提出新思想,一个
4、猜想可以带出或生出一个新的学科方向。比如,对欧氏第五公设的证明产生了非欧儿何理论,四色猜想对开辟数学研究新途径冇重要意义。在数学史上冇很多冇名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。得沃尔夫奖。二、成长与磨砺——数学的发展写关于数学文化不得不写数学的发展。数学是人类最古老的科学知识z—,它主要是研究现实生活屮数与数、形与形,以及数与形之间相互关系的一门学科。他们发展也经历的很多的坎坷,在磨砺中他也得以不断的成长。首先是数学的萌芽阶段,在这一吋代的杰出代表是占巴比伦数学、中国数学、埃及数学、印度数学等。古埃及文化可追溯到公元前4000年,
5、在那里,公元前3200年就已冇了统一的国家。公元前2900年,开始建筑金字塔,就金字塔的建筑來讲,□经具备-•些初等儿何的知识;巴比伦文化可以上溯到公元前2000年左右的苏美尔文化,这一时期,人们基于对虽的认识,经建立了数的概念。从人约公元前1800年开始,巴比伦已经使用较为系统的以60为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高无上的。它广泛的吸取了其他文明中的冇价值的东西,创立了自己的文明与文化,对西方文明乃至世界文明的发展起了重要作用;同时,在屮亚和东方也创造了灿烂的数学文化。自公元询8世纪起,印度己有一些丰富的数学知识。中国数学是世界数学史中的瑰宝,
6、在仰韶文化中,已经出土的陶器上已刻冇用
7、
8、
9、,
10、
11、
12、
13、等表示1,2,3,4的记号。西安半坡出土的陶器屮就冇用圆点堆成的三角形或正多边形。然后是常数学阶段,这时期,数位希腊数学家取得辉煌成就,在2000年时间内,希腊人创造的文明一直延续到牛顿时代。M.克莱I大]在评价希腊人的《几何原本》和《圆锥曲线》时说:“从这些精心撰述的著作屮,我们看得出此前三百年间数学上的创造性工作,或此示数学史上关系重大的一些问题。”说道希腊时代的辉煌,不得不提到希腊璀璨的数学家们。毕达哥拉斯,曾被人们认为是一个神秘主义者,据说他“十分Z-是天才,十分Z九是纯粹的吃语者。”他把证明引入了数学,这也是他最伟大的功绩之
14、一。毕达哥拉斯还提出了抽象,抽彖引发了几何的思辨,从实物的数与形,抽彖到数学上的数与形,本身就把数学推向科学的开始。在希腊数学时期还有芝诺的四个简单悖论,这四个简单悖论震惊了哲学界。在希腊数学里最主要的工作精华和最大的光荣落在了欧儿里徳和阿波罗尼奥斯的头上。欧儿里徳撰写的《几何原本》是古希腊数学的集大成,它充分发挥了希腊哲学的优势,借助演绎推理,展现给人们一个完整的典范的学科系统。它从定义、公设、公理,一步一步,由远及近,由表及里地
此文档下载收益归作者所有