欢迎来到天天文库
浏览记录
ID:464050
大小:63.50 KB
页数:5页
时间:2017-08-05
《图像分割方法综述【文献综述】》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、毕业论文文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。最后指出了图像分割的算法还有一些进一步优化的研究发展方向。关键词:图像分割,参数活动轮廓模型,几何活动轮廓
2、模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子
3、、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。2、整体性。能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。4、稳定性,算法
4、受噪声的影响性很小。5、自动化,分割过程不需要人工的干预。但是让一种具体的图像分割方法全部满足上述特点是很难的,各种图像分割的方法都存在着必然的局限性,所以只能根据不同的适用领域和所要分割的图像区域特征来选择所对应的图像分割方法。2.早期的图像分割方法早期的图像分割方法,根据方法所利用的图像特征,分为边界法和区域法两类[4]。前者是根据区域间像素特征的突变性或不连续性实现;后者是通过架设分割结果的某子区域具有一定的相似性质,而不同区域的像素没有共同性质,即通过判断区域的相似性来进行的分割。它们都存在着各自的优点和缺点,基于区域分割的方法,常见的有:阈值法[
5、5],常用的并行区域分割技术,阈值是用于区分不同目标的灰度值,选择合适的阈值是该分割法的关键;区域生长法:从图像的某个像素出发,按一定的准则对领域像素点进行判断,将符合要求的像素点逐步加入,至满足一定条件时终止。此方法计算简单,但需要人为的设置初始点,对噪声敏感;分裂合并法:从整个图像出发,不断分裂成各个子区域,按照一定条件对前景区域进行合并,该方法虽分割效果好,但算法复杂,计算量大,也有可能破坏区域的边界等。基于边缘的分割算法可分为并行边缘检测和串行边缘检测两种[6],并行边缘检测是基于图像边缘处的灰度值不连续性,而利用微分算子进行检测,常用的有Robe
6、rts算子,Prewitt算子,Sobel算子,Laplace算子,Marr算子,Krisch算子等。而串行边界分割不但利用了本身像素的信息,还利用了其他已处理的像素信息,常用的算法有边界跟踪。在实际应用中,为了更好的分割效果,经常把各种的分割算法结合起来用,这也成为了图像分割的重点研究方向之一。3.图像分割的发展3.1参数形式的活动轮廓模型(snake模型)(2-1)1987年,Kass等人提出来参数活动轮廓模型(Snake模型),(2-1)为Snake模型的能量函数表示,将一系列的图像处理问题统一的转换为能量极小化的问题。跟其他传统方法一样,传统的参数
7、活动轮廓模型存在很多的局限性,由于模型是由演化曲线自身的内力和图像信息的外力构成的,由内力约束它的形状,外力引导它的行为,模型外力的作用范围小是很大的缺陷,而且,这个方法对轮廓的初始位置敏感,不能收敛到轮廓的凹陷区域及处理拓扑变化,计算复杂度也很高。针对外力的缺陷,在后期的研究中产生了很多改进版的模型,Cohen等人在模型外力中,为了使得模型轮廓在图像同质区域内能够稳定的进行收敛,增加了一项气球膨胀力。Xv等人提出的GVF(GradientVectorFlow)模型和广义GVF(GeneralizedGVF)模型,这两个模型在扩大外力作用范围上有很大的帮助
8、,同时也可以扩大收敛的凹陷区域。Li等人提出的VFC(Vector
此文档下载收益归作者所有