便携式电子中的电池供电设计策略

便携式电子中的电池供电设计策略

ID:46341976

大小:81.50 KB

页数:14页

时间:2019-11-22

便携式电子中的电池供电设计策略_第1页
便携式电子中的电池供电设计策略_第2页
便携式电子中的电池供电设计策略_第3页
便携式电子中的电池供电设计策略_第4页
便携式电子中的电池供电设计策略_第5页
资源描述:

《便携式电子中的电池供电设计策略》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、便携式电子中的电池供电设计策略电池在人们的日常生活中日益普及,选择何种电池和低功耗设计方案,已成为电池供电产品的开发能否取得成功的关键。由于当今半导体技术的发展比电池技术更加迅速,电源管理设计是使用户深切感受到产品优劣的关键所在。除了安全性、成本和尺寸外,将电池的运行时间最大化并延长其使用寿命,对于电池供电应用的系统设计来说也是极其重要的。随着用于驱动便携式应用的电池技术不断增多,需要选择合适的方法来对可充电电池进行放电和充电。本文首先回顾适用于便携式应用的一般电池策略,然后将讨论采用当今集成解决方案的电源管理和电池管理电路设计。设计方法1主要的电池技术设计电池技术可简单地分为两

2、类:不可充电型和可充电型。不可充电电池在使用一次后即废弃,称为一次性电池。碱性电池是最常见的家用一次性电池。市面上也有碱性可充电电池,但不在本文的讨论范围内。典型碱性电池具有大约1.5V至1.65V的浮动电压,标称电压为1.2V,寿命结束时的电压为大约0.9V.单节碱性电池寿命结束时的电压可低至0.7V-0.8V,具体取决于负载电流。表1展示了一些常见的碱性电池配置。某些应用可采用多种配置,具体取决于产品外形、系统要求、可用解决方案和功耗预算。例如,某种无线光电鼠标解决方案的电压范围是1.8V至3.2V.该鼠标使用2节串联配置的碱性电池便可正常,无需附加稳压电源。如果需要极其紧凑

3、的鼠标设计,则2节AA/AAA碱性电池可能不适用。在这种情况下,可使用单节AA/AAA碱性电池来减少所占空间,但需要用升压转换器将电压升至1.8V.表1:碱性电池配置的比较*(下图)可充电电池被认为是二次电池,每次使用后都可将电量尽可能恢复到原始状态,直至电池寿命结束。本文将以锂离子电池(Li-Ion)、锂聚合物电池(Li-Poly)和镰氢电池(NiMH)为例进行说明。镰氢电池是很好的碱性电池替代品,因为其外形和电压范围与碱性电池类似。传统银氢电池的一个缺点是自放电率高(每月约20%,如表2所示),但有一家领先的电池制造商已克服了这一难关,其推出的鎳氢电池系列在生产12个月后仍可

4、保持至少85%的电容量。恢复镰氢电池的电量有简单且低成本的解决方案,但采用双重截止充电方法(通过充电电流和环境来指定)的嵌入式充电器将获得最优性能o双重截止充电方法结合了温度随时间升高和电压随时间降低(或不变)的特性。表2:电池化学性能的比较(下图)锂离子电池目前被认为是成熟的电池技术,已广泛应用于移动电话和汽车等领域,因为与十年前相比,其生产成木更低且性能更好。在设计多节电池系统时,单节标称电压为3.6V的电池具有巨大优势,可减少2/3的电池节数。锂离子电池在质量和体积上的高能量密度使其适用于多种便携式应用,例如个人媒体播放器或无线蓝牙(Bluetooth)耳机。但是,需要提供

5、保护电路,以将锂离子电池可能导致的危险(例如过充或过热)降至最低限度。锂离子电池的使用寿命相对较长(可充电500-1,000次),如果每天都对电池充电,在至12年后才需要更换。设计合理的锂离了电池电源管理系统将延长电池使用寿命,并提高整个系统的可靠性。2电池供电应用中的集成电路IC除了系统的主芯片组(如果含有的话)夕卜,现代电池系统设计通常至少含有以卜集成电路(integratedcircuit,IC)中的一种:1.电源管理单元(PowerManagementUnit,PMU)2.单片机单元(MicrocontrollerUnit,MCU)3.电池管理单元(BatteryMana

6、gementUnit,BMU)本部分将讨论这些ic以及如何选择适当拓扑以延长电池运行时间并达到设计目标。PMU在系统中提供调节后的电压或电流。某些稳压功能集成在主芯片组内。但是,市于布线复杂性、EMI问题和性能不足(包括电源输出通道数不够或负载能力不足等),仍需要单片式转换器。单片式电压转换器可提供单个或多个输出。电池供电应用常用的功率调节拓扑包括但不限于线性稳压器、开关电容稳压器和电感开关稳压器。所有这些拓扑的功能都是一样的,即在设计的电流范围内对输出电压进行稳压(如直流-直流转换器),或在指定的电压范围内调节电流(如LED驱动器)。每种拓扑可能都需要单独一篇文章來进行介绍。本

7、文重点介绍电源管理设计的基础知识。在选择稳压器时,很容易想到低压差稳压器(LowDropoutRegulator,LDO)0LDO的EMI问题最少,并且需要的外部元件数通常也最少。P0UT=V0UTxI0UT公式1PIN=VINx(IOUT+IQ)公式2ri=POUT/PIN=VOUTxIOUT/VINx(IOUT+IQ)公式3IQGOUT时,n=VOUT/VIN公式4图1演示了LDO的效率。如果输出电流远大于静态电流(IQ),则可以忽略IQ.对于线性电路,输入电流等于输出电流与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。