欢迎来到天天文库
浏览记录
ID:45854999
大小:90.43 KB
页数:6页
时间:2019-11-18
《《直线与平面垂直的判定》——第1课时(说课稿)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《直线与平面垂直的判定》——第1课时(说课稿) 《直线与平面垂直的判定》——第一课时(说课稿) 教材分析 1、教材的地位和作用: 《直线与平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观
2、念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。 【学生情况分析】 在初中学生已经掌握了平面内证明线线垂直的方法,学习本课前,学生又通过直观感知、操作确认的方法,学习了直线、平面平行的判定定理,对空间概念建立有一定基础,因而,可以采用类比的方法来学习本课。 但是,学生的抽象概括能力、空间想象力还有待提高。线面垂直的定义比较抽象,平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。因而,我将本节课的教学难点确立为:操作
3、确认并概括出直线与平面垂直的定义和判定定理。 【教学目标】 知识与技能:通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理;并能运用定义和定理证明一些空间位置关系的简单命题。 过程与方法:通过线面垂直定义及定理的探究过程,感知几何直观能力和抽象概括能力,体会转化思想在解决问题中的运用。 情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。 【教学重点和难点】 操作确认并概括出直线与平面垂直的定义和判定定理。 【教学过程设计】 1.从实
4、际背景中感知直线与平面垂直的形象 问题1:空间一条直线和一个平面有哪几种位置关系? 问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明。 设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义。 2.提炼直线与平面垂直的定义 问题3:结合对下列问题的思考,试着给出直线和平面垂直的定义. (1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少? (2)随着
5、太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变? (3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么? 设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念,学生叙写定义,并建立文字、图形、符号这三种语言的相互转化。
6、 思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直? (2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线? (对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则) 设计意图: 通过对问题(1)的辨析讨论,深化直线与平面垂直的概念。 通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。 通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平
7、面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。 3.探究直线与平面垂直的判定定理 师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触) 问题4: (1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面所在的平面垂直? (组织学生动手操作、探究、确认)
8、 设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。这时,AD与BD,CD都垂直,而BD,CD相交,从而引出判定定理。 定理一条直线与一个平面上的两条相交直线都垂直
此文档下载收益归作者所有