中考数学真题分类汇编第三期专题35尺规作图试题含解析

中考数学真题分类汇编第三期专题35尺规作图试题含解析

ID:45847788

大小:94.00 KB

页数:5页

时间:2019-11-18

中考数学真题分类汇编第三期专题35尺规作图试题含解析_第1页
中考数学真题分类汇编第三期专题35尺规作图试题含解析_第2页
中考数学真题分类汇编第三期专题35尺规作图试题含解析_第3页
中考数学真题分类汇编第三期专题35尺规作图试题含解析_第4页
中考数学真题分类汇编第三期专题35尺规作图试题含解析_第5页
资源描述:

《中考数学真题分类汇编第三期专题35尺规作图试题含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、尺规作图一.填空题1.(xx·辽宁省葫芦岛市)如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B.C,再分别以点B.C为圆心,大于BC的长为半径作弧,两弧交于点D.作直线AD分别交OP、ON于点E.F.若∠MON=60°,EF=1,则OA= 2 .【解答】解:由作法得AD⊥ON于F,∴∠AOF=90°.∵OP平分∠MON,∴∠EOF=∠MON=×60°=30°.在Rt△OEF中,OF=EF=.在Rt△AOF中,∠AOF=60°,∴OA=2OF=2.故答案为:2.2.(xx·辽宁省抚顺市)(3.00分)

2、如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是 10 .【分析】根据平行四边形的性质可知AD=BC=3,CD=AB=7,再由垂直平分线的性质得出AE=CE,据此可得出结论【解答】解:∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7.∵由作图可知,MN是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10.故答案为:10.【点评】本题考查的是作图﹣

3、基本作图,熟知线段垂直平分线的作法是解答此题的关键.3.(xx·吉林长春·3分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为 37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37

4、.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.二.解答题1.(xx·湖北江汉·5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,

5、点C即为所求;2.(xx·湖北咸宁·8分)已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C.D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【答案】证明见解析.【解析】【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“S

6、SS“可证明△OCD≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【详解】由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.【点睛】本题考查了基本作图——作一个角等于已知角,全等三角形的判定与性质,熟练掌握基本作图的基本方法以及利用SSS判定三角形全等的方法是解题的关键.3.(xx·江苏常州·10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(

7、2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠A

8、FE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。