资源描述:
《(新课标)天津市2019年高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、题型练6 大题专项(四)立体几何综合问题1.如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形.A1A=6,且A1A⊥底面ABCD.点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P-QD-A的余弦值为,求四面体ADPQ的体积.2.(2018江苏,22)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.3.如图,在几
2、何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.4.在如图所示的组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D,且PD=PC=.(1)证明:PD⊥平面PBC;(2)求PA与平面ABCD所成角的正切值;(3)当AA1的长为何值时,PC∥平面AB1D?5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥
3、BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.6.已知四边形ABCD满足AD∥BC,BA=AD=DC=BC=a,E是BC的中点,将△BAE沿AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为B1D的中点.(1)求四棱锥B1-AECD的体积;(2)证明:B1E∥平面ACF;(3)求平面ADB1与平面ECB1所成锐二面角的余弦值.题型练6 大题专项(四)立体几何综合问题1.解由题设知,AA1,AB,AD两
4、两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.(1)证明:若P是DD1的中点,则P又=(3,0,6),于是=18-18=0,所以,即AB1⊥PQ.(2)由题设知,=(6,m-6,0),=(0,-3,6)是平面PQD内的两个不共线向量.设n1=(x,y,z)是平面PQD的一个法向量,则取y=6,得n1=(6-m,6,3).又平面AQD的一个法向量是n2=(
5、0,0,1),所以cos=.而二面角P-QD-A的余弦值为,因此,解得m=4或m=8(舍去),此时Q(6,4,0).设=(0<λ≤1),而=(0,-3,6),由此得点P(0,6-3λ,6λ),所以=(6,3λ-2,-6λ).因为PQ∥平面ABB1A1,且平面ABB1A1的一个法向量是n3=(0,1,0),所以n3=0,即3λ-2=0,亦即λ=,从而P(0,4,4).于是,将四面体ADPQ视为以△ADQ为底面的三棱锥P-ADQ,则其高h=4.故四面体ADPQ的体积V=S△ADQ·h=6×6×4=24.2.解如图,在正三棱柱ABC-A1
6、B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以{}为基底,建立空间直角坐标系O-xyz.因为AB=AA1=2,所以A(0,-1,0),B(,0,0),C(0,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2).(1)因为P为A1B1的中点,所以P,从而=(0,2,2),故
7、cos<>
8、=因此,异面直线BP与AC1所成角的余弦值为(2)因为Q为BC的中点,所以Q,因此=(0,2,2),=(0,0,2).设n=(x,y,z)为平面AQC1的一个法向量,则不妨取n=(,-1,1).设直线
9、CC1与平面AQC1所成角为θ,则sinθ=
10、cos<,n>
11、=,所以直线CC1与平面AQC1所成角的正弦值为3.(1)证法一如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形,得AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.证法二如图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以
12、GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点,得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面A