资源描述:
《(天津专用)2020版高考数学大一轮复习 8.1 空间几何体的表面积和体积精练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、8.1 空间几何体的表面积和体积【真题典例】挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.空间几何体的结构特征认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构2016天津,11空间几何体的结构特征三视图★★★2015天津,102014天津,102.空间几何体的表面积和体积理解球、柱体、锥体、台体的表面积和体积的计算公式(不要求记忆公式)2018天津,11空间几何体的表面积和体积正方体的性质★★★分析解读 1.理解多面体、棱柱、棱锥、棱台的概念,牢记它们的几何特征;2.理解圆柱、圆锥、圆台、球等几何体的形成过程,
2、正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法;3.理解柱、锥、台、球(无侧面积)的侧面积、表面积和体积的概念;4.结合模型,在理解的基础上熟练掌握柱、锥、台、球的表面积公式和体积公式;5.备考时关注以柱、锥与球的接、切问题为命题背景,突出空间几何体的线面位置关系的试题;6.高考对本节内容的考查以计算几何体的表面积和体积为主,分值约为5分,属于中档题.破考点【考点集训】考点一 空间几何体的结构特征1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
3、 C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 D 考点二 空间几何体的表面积和体积2.(2015北京,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+5 B.4+5 C.2+25 D.5答案 C 3.(2015安徽改编,19,13分)如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.求三棱锥P-ABC的体积.解析 由AB=1,AC=2,∠BAC=60°,可得S△ABC=12·AB·AC·sin60°=32.由PA⊥平
4、面ABC,可知PA是三棱锥P-ABC的高,又PA=1,所以三棱锥P-ABC的体积V=13·S△ABC·PA=36.炼技法【方法集训】方法1 空间几何体表面积与体积的求解方法1.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.323π C.8π D.4π答案 A 2.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12 D.1答案 A 3.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“
5、今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛 B.22斛 C.36斛 D.66斛答案 B 4.(2018江苏,10,5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 答案 435.(2014山东文,13,5分)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积
6、为 . 答案 12方法2 与球有关的切、接问题的求解方法6.(2015课标Ⅱ,10,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π答案 C 7.(2017课标Ⅱ,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为 . 答案 14π8.(2017天津,11,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 答案 92π过专题
7、【五年高考】A组 自主命题·天津卷题组1.(2016天津,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为 m3. 答案 22.(2015天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3. 答案 83π3.(2014天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3. 答案 20π34.(2018天津,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面A